DOI QR코드

DOI QR Code

Evaluation of availability of various internal ribosome entry sites (IRESs) for bicistronic expression in different fish cell lines

  • Kyung Min Lee (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Ki Hong Kim (Department of Aquatic Life Medicine, Pukyong National University)
  • Received : 2023.06.01
  • Accepted : 2023.06.12
  • Published : 2023.06.30

Abstract

The internal ribosome entry site (IRES) elements from various RNA viruses are widely used to express proteins in bicistronic or multicistronic ways in mammalian cells. However, research on the application of IRESs in fish cells has been poorly conducted. In this study, to evaluate the availability of various viral IRESs in fish cells based on a bicistronic vector system, the translation activity of IRESs from viruses of invertebrates (aphid lethal paralysis virus ALPV; cricket paralysis virus, CrPV; and Plautia stali intestine virus, PSIV), of mammals (encephalomyocarditis virus, EMCV), and of fish (infectious pancreatic necrosis virus, IPNV; marine birnavirus, MABV; and snakehead retrovirus, SnRV) was analyzed in various fish cell lines originated from salmonid (chinook salmon embryonic cells, CHSE-214), cyprinid (Epithelioma papulosum cyprinid, EPC), and flatfish (Hirame natural embryonic cells, HINAE). Translation mediated by EMCV IRES was shown in all cell lines, but the activity was weak in CHSE-214 and HINAE cells while high activity was shown in EPC cells, suggesting that although EMCV IRES can be broadly used in various fish cells, the translational activity can be varied according to different cell lines. PSIV IRES showed moderate activity in EPC cells and low activity in CHSE-214 and HINAE cells. CrPV IRES showed weak activity in EPC and HINAE cells and no activity in CHSE-214 cells. In the case of ALPV IRES, green fluorescence was observed only in EPC cells but the activity was very weak. These results suggest that dicistroviral IRESs analyzed in this study would not be the best option for protein expression in various fish cells. The translation activity of SnRV IRES in fish cells was first verified in EPC cells, though the activity was very weak. The 5'UTR of MABV segment A showed high translation activities in all examined fish cell lines, suggesting that IRES of MABV can be used to develop multicistronic expression systems or cap-independent RNA-based translation systems in a wide range of fish cells.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021M3E5E60 26104).

References

  1. Attal, J., Theron, M. C. and Houdebine, L. M.: The optimal use of IRES (internal ribosome entry site) in expression vectors. Genet Anal., 15: 161-165, 1999. https://doi.org/10.1016/S1050-3862(99)00021-2
  2. Bochkov, Y. A. and Palmenberg, A. C.: Translational efficiency of EMCV IRES in bicistronic vectors is dependent upon IRES sequence and gene location. BioTechniques 41, 2006.
  3. Bonning, B. C. and Miller, W. A.: Dicistroviruses. Annu Rev Entomol., 55: 129-150, 2010. https://doi.org/10.1146/annurev-ento-112408-085457
  4. Borman, A. M., Bailly, J. L., Girard, M. and Kean, K. M.: Picornavirus internal ribosome entry segments: comparison of translation efficiency and the requirements for optimal internal initiation of translation in vitro. Nucleic Acids Res., 23: 3656-3663, 1995. https://doi.org/10.1093/nar/23.18.3656
  5. de Breyne, S. and Ohlmann, T.: Focus on Translation Initiation of the HIV-1 mRNAs. Int J Mol Sci., 20: 101, 2018.
  6. Delmas, B., Attoui, H., Ghosh, S., Malik, Y. S., Mundt, E., Vakharia, V. N. and Ictv Report Consortium: ICTV virus taxonomy profile: Birnaviridae. J Gen Virol., 100: 5-6, 2019.
  7. Derrington, E. A., Lopez-Lastra, M. and Darlix, J. L.: Dicistronic MLV-retroviral vectors transduce neural precursors in vivo and co-express two genes in their differentiated neuronal progeny. Retrovirology 2: 60, 2005.
  8. Dobos P.: In vitro guanylylation of infectious pancreatic necrosis virus polypeptide VP1. Virology 193: 403-413, 1993. https://doi.org/10.1006/viro.1993.1137
  9. Fahrenkrug, S. C., Clark, K. J., Dahlquist, M. O. and Hackett, P. B., Jr.: Dicistronic Gene Expression in Developing Zebrafish. Mar Biotechnol (NY)., 1: 552-561, 1999. https://doi.org/10.1007/PL00011810
  10. Fukamachi, S., Yada, T., Meyer, A. and Kinoshita, M.: Effects of constitutive expression of somatolactin alpha on skin pigmentation in medaka. Gene 442: 81-87, 2009. https://doi.org/10.1016/j.gene.2009.04.010
  11. Gamil, A. A., Mutoloki, S. and Evensen, O.: A piscine birnavirus induces inhibition of protein synthesis in CHSE-214 cells primarily through the induction of eIF2α phosphorylation. Viruses 7: 1987-2005, 2015. https://doi.org/10.3390/v7041987
  12. Godet, A. C., David, F., Hantelys, F., Tatin, F., Lacazette, E., Garmy-Susini, B. and Prats, A. C.: IRES Trans-Acting Factors, Key Actors of the Stress Response. Int J Mol Sci., 20: 924, 2019.
  13. Hart, D., Frerichs, G. N., Rambaut, A. and Onions, D. E.: Complete nucleotide sequence and transcriptional analysis of snakehead fish retrovirus. J Virol., 70: 3606-3616, 1996. https://doi.org/10.1128/jvi.70.6.3606-3616.1996
  14. Hertz, M. I. and Thompson, S. R.: In vivo functional analysis of the Dicistroviridae intergenic region internal ribosome entry sites. Nucleic Acids Res., 39: 7276-7288, 2011. https://doi.org/10.1093/nar/gkr427
  15. Jaafar, Z. A. and Kieft, J. S.: Viral RNA structure-based strategies to manipulate translation. Nat Rev Microbiol., 17: 110-123, 2019. https://doi.org/10.1038/s41579-018-0117-x
  16. Jang, S. K., Krausslich, H. G., Nicklin, M. J., Duke, G. M., Palmenberg, A. C. and Wimmer, E.: A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol., 62: 2636-2643, 1988. https://doi.org/10.1128/jvi.62.8.2636-2643.1988
  17. Johnson, A. G., Grosely, R., Petrov, A. N. and Puglisi, J. D.: Dynamics of IRES-mediated translation. Philos Trans R Soc Lond B Biol Sci., 372, 2017.
  18. Kim, S. Y. and Kim, K. H.: Marine birnavirus (MABV)'s 5' terminal region of segment A acts as internal ribosome entry site (IRES). J. Fish Pathol., 34: 17-22, 2021.
  19. Komar, A. A. and Hatzoglou, M.: Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell cycle 10: 229-240, 2011. https://doi.org/10.4161/cc.10.2.14472
  20. Licursi, M., Carmona-Martinez, R. A., Razavi, S. and Hirasawa, K.: Promotion of Viral IRES-Mediated Translation Initiation under Mild Hypothermia. PLoS One 10:e0126174, 2015.
  21. Liu, L., Gao, S., Luan, W., Zhou, J. and Wang, H.: Generation and functional evaluation of a DNA vaccine co-expressing Cyprinid herpesvirus-3 envelope protein and carp interleukin-1 beta. Fish Shellfish Immunol., 80: 223-231, 2018. https://doi.org/10.1016/j.fsi.2018.05.046
  22. Lozano, G. and Martinez-Salas, E.: Structural insights into viral IRES-dependent translation mechanisms. Curr Opin Virol., 12: 113-120, 2015. https://doi.org/10.1016/j.coviro.2015.04.008
  23. Lu, J., Zhang, J., Wang, X., Jiang, H., Liu, C. and Hu, Y.: In vitro and in vivo identification of structural and sequence elements in the 5' untranslated region of Ectropis obliqua picorna-like virus required for internal initiation. J Gen Virol., 87: 3667-3677, 2006. https://doi.org/10.1099/vir.0.82090-0
  24. Martinez-Salas, E., Francisco-Velilla, R., FernandezChamorro, J., Lozano, G. and Diaz-Toledano, R.: Picornavirus IRES elements: RNA structure and host protein interactions. Virus Res., 206: 62-73, 2015. https://doi.org/10.1016/j.virusres.2015.01.012
  25. Pelletier, J. and Sonenberg, N.: Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334: 320-325, 1988. https://doi.org/10.1038/334320a0
  26. Rivas-Aravena, A., Munoz, P., Jorquera, P., Diaz, A., Reinoso, C., Gonzalez-Catrilelbun, S. and Sandino, A. M.: Study of RNA-A Initiation Translation of The Infectious Pancreatic Necrosis Virus. Virus Res., 240: 121-129, 2017. https://doi.org/10.1016/j.virusres.2017.07.014
  27. Sonenberg, N. and Hinnebusch, A. G.: Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136: 731-745, 2009. https://doi.org/10.1016/j.cell.2009.01.042
  28. Spriggs, K. A., Stoneley, M., Bushell, M. and Willis, A. E.: Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biol Cell 100: 27-38, 2008. https://doi.org/10.1042/BC20070098
  29. Walsh, D. and Mohr, I.: Viral subversion of the host protein synthesis machinery. Nat Rev Microbiol., 9: 860-875, 2011. https://doi.org/10.1038/nrmicro2655
  30. Xu, H., Xing, J., Tang, X., Sheng, X. and Zhan, W.: Generation and functional evaluation of a DNA vaccine co-expressing Vibrio anguillarum VAA protein and flounder interleukin-2. Fish Shellfish Immunol., 93: 1018-1027, 2019. https://doi.org/10.1016/j.fsi.2019.08.052