DOI QR코드

DOI QR Code

CLASSIFICATION OF SOLVABLE LIE ALGEBRAS WHOSE NON-TRIVIAL COADJOINT ORBITS OF SIMPLY CONNECTED LIE GROUPS ARE ALL OF CODIMENSION 2

  • Hieu Van Ha (University of Economics and Law and Vietnam National University ) ;
  • Vu Anh Le (University of Economics and Law and Vietnam National University ) ;
  • Tu Thi Cam Nguyen (University of Science Ho Chi Minh City, Vietnam Can Tho University) ;
  • Hoa Duong Quang (Faculty of Information Technology Hoa Sen University)
  • Received : 2022.07.29
  • Accepted : 2023.04.03
  • Published : 2023.07.01

Abstract

We give a classification of real solvable Lie algebras whose non-trivial coadjoint orbits of corresponding to simply connected Lie groups are all of codimension 2. These Lie algebras belong to a well-known class, called the class of MD-algebras.

Keywords

Acknowledgement

This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number B2023-34-01. A part of this paper was done during the visit of Hieu V. Ha and Vu A. Le to Vietnam Institute for Advanced Study in Mathematics (VIASM) in summer 2022. They are very grateful to VIASM for the support and hospitality. The authors also wish to express their sincere thanks to the anonymous referee for valuable suggestions that improved the final version of this manuscript.

References

  1. D. Arnal, M. Cahen, and J. Ludwig, Lie groups whose coadjoint orbits are of dimension smaller or equal to two, Lett. Math. Phys. 33 (1995), no. 2, 183-186. https://doi.org/10.1007/BF00739806
  2. C. G. Bartolone, A. Di Bartolo, and G. Falcone, Nilpotent Lie algebras with 2-dimensional commutator ideals, Linear Algebra Appl. 434 (2011), no. 3, 650-656. https://doi.org/10.1016/j.laa.2010.09.036
  3. L. Boza Prieto, E. M. Fedriani, J. Nunez, and F. Tenorio, A historical review of the classifications of Lie algebras, Rev. Un. Mat. Argentina 54 (2013), no. 2, 75-99.
  4. D. N. Diep, Methods of noncommutative geometry for group C∗-algebras, Chapman & Hall/CRC Research Notes in Mathematics, 416, Chapman & Hall/CRC, Boca Raton, FL, 2000.
  5. M. Goze and E. Remm, Coadjoint orbits of Lie algebras and Cartan class, SIGMA Symmetry Integrability Geom. Methods Appl. 15 (2019), Paper No. 002, 20 pp. https://doi.org/10.3842/SIGMA.2019.002
  6. H. V. Ha, V. A. Le, and H. D. Quang, Classification of solvable Lie groups whose nontrivial coadjoint orbits are of codimension 1, Commun. Korean Math. Soc. 37 (2022), no. 4, 1181-1197. https://doi.org/10.4134/CKMS.c210308
  7. T. Janisse, Classification of finite dimensional Lie algebras with derived algebras having dimension 1 or 2, Technical Reports 10-04, University of Windsor, Windsor, Ontario, 2010.
  8. A. G. Kaplan, On the geometry of groups of Heisenberg type, Bull. Lond. Math. Soc. 15 (1983), no. 1, 35-42. https://doi.org/10.1112/blms/15.1.35
  9. A. A. Kirillov, Elements of the Theory of Representations, Springer Verlag, Berlin - Heidenberg - New York, 1976.
  10. V. A. Le, T. A. Nguyen, T. T. C. Nguyen, T. T. M. Nguyen, and T. N. Vo, Applying matrix theory to classify real solvable Lie algebras having 2-dimensional derived ideals, Linear Algebra Appl. 588 (2020), 282-303. https://doi.org/10.1016/j.laa.2019.11.031
  11. F. Levstein and A. Tiraboschi, Classes of 2-step nilpotent Lie algebras, Comm. Algebra 27 (1999), no. 5, 2425-2440. https://doi.org/10.1080/00927879908826572
  12. M. A. P. Newman, Two classical theorems on commuting matrices, J. Res. Nat. Bur. Standards Sect. B 71B (1967), 69-71. https://doi.org/10.6028/jres.071B.013
  13. H. Radjavi and P. Rosenthal, Simultaneous Triangularization, Springer, 2000. https://doi.org/10.1007/978-1-4612-1200-3
  14. R. Scharlau, Paare alternierender Formen, Math. Z. 147 (1976), no. 1, 13-19. https://doi.org/10.1007/BF01214270
  15. C. Schobel, A classification of real finite-dimensional Lie algebras with a low-dimensional derived algebra, Rep. Math. Phys. 33 (1993), no. 1-2, 175-186. https://doi.org/10.1016/0034-4877(93)90053-H
  16. L. Snobl and P. Winternitz, Classification and identification of Lie algebras, CRM Monograph Series, 33, Amer. Math. Soc., Providence, RI, 2014. https://doi.org/10.1090/crmm/033
  17. V. M. Son and H. H. Viet, Sur la Struture Des C*-Algebres D'une Classe de Groupes de Lie, J. Operator Theory 11 (1984), no. 1, 77-90.
  18. R. C. Thompson, Pencils of complex and real symmetric and skew matrices, Linear Algebra Appl. 147 (1991), 323-371. https://doi.org/10.1016/0024-3795(91)90238-R
  19. L. A. Vu, On the foliations formed by the generic K-orbits of the MD4-groups, Acta Math. Vietnam. 15 (1990), no. 2, 39-55.
  20. L. A. Vu, H. V. Ha, and N. T. T. Hieu, Classification of 5-dimensional MD-algebras having non-commutative derived ideals, East-West J. Math. 13 (2011), no. 2, 118-132.
  21. L. A. Vu, H. V. Ha, N. A. Tuan, C. T. T. Hai, and N. T. M. Tuyen, Classification of real solvable Lie algebras whose simply connected Lie groups have only zero or maximal dimensional coadjoint orbits, Rev. Un. Mat. Argentina 57 (2016), no. 2, 119-143.
  22. L. A. Vu and K. P. Shum, Classification of 5-dimensional MD-algebras having commutative derived ideals, in Advances in algebra and combinatorics, 353-371, World Sci. Publ., Hackensack, NJ, 2008.