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CLASSIFICATION OF SOLVABLE LIE ALGEBRAS WHOSE
NON-TRIVIAL COADJOINT ORBITS OF SIMPLY
CONNECTED LIE GROUPS ARE ALL OF CODIMENSION 2

Hieu VAN HaA, Vu ANH LE, Tu THI CAM NGUYEN, AND HOoA DUONG QUANG

ABSTRACT. We give a classification of real solvable Lie algebras whose
non-trivial coadjoint orbits of corresponding to simply connected Lie
groups are all of codimension 2. These Lie algebras belong to a well-
known class, called the class of MD-algebras.

1. Introduction

The problem of the classification of Lie algebras (as well as Lie groups) has
received much attention since the early 20t century. However, this is still an
open problem. By Levi’s decomposition and the Cartan’s theorem, we know
that the problem of classification of Lie algebras over any field of characteristic
zero is reduced to the problem of classification of solvable ones. However, until
now, there is no a complete classification of n dimensional solvable Lie algebras
if n > 7. And this classification problem seems to be impossible to solve, unless
there is a suitable change on the definition of term “classification” or there is
a completely new method to classify those Lie algebras [3].

As we know, the Lie algebra of a (simply connected) Lie group is commu-
tative if and only if all of its coadjoint orbits are trivial (or of dimension 0).
However, Lie groups which have a non-trivial coadjoint orbit are much more
complicated. In 1980, while searching for the class of Lie groups whose C*-
algebra can be characterized by BDF K-functions, Do Ngoc Diep proposed to
study a class of Lie groups whose non-trivial coadjoint orbits have the same
dimension [4]. He named this class as MD-class. Any Lie group which belongs
to this class is called an MD-group and the Lie algebra of any MD-group is
called an MD-algebra.

It can be said that Vuong Manh Son and Ho Huu Viet were the authors
who faced the problem of classification MD-algebras (as well as MD-groups)
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firstly. In 1984, they gave not only the classification of MD-groups whose non-
trivial coadjoint orbits are of the same dimension as the group but also some
important characteristics of this class. For example, they showed that any
non-commutative MD-algebra is either 1-step solvable or 2-step solvable, i.e.,
the second derived algebra is commutative [17]. Afterward, from 1990, Vu A.
Le and Hieu V. Ha (the authors of this paper) gave the classification (up to
isomorphic) of some subclasses; including all MD-algebras of dimension 4 [19],
all MD-algebras of dimension 5 [20,22], all MD-algebras which have the first
derived ideal of dimension 1 or codimension 1 [21].

Besides, a list of all simply connected Lie groups whose coadjoint orbits are
of dimension up to 2 was given by D. Arnal et al. in 1995 [1]. In 2019, Michel
Goze and Elisabeth Remm used Cartan class to give the classification of all Lie
algebras that all non-trivial coadjoint orbits of corresponding Lie groups are
of dimension 4 [5]. Remark that the Lie algebras classified in [1] and [5] are
all MD-algebras in terms of Diep. Moreover, Goze and Remm also gave some
characteristics of the class of MD-algebras whose non-trivial coadjoint orbits
are of codimension 1. Recently, in an earlier article [6], we have classified all
real solvable Lie algebras whose non-trivial coadjoint orbits are of codimension
1. Now, we will give the complete classification of real solvable Lie algebras
whose non-trivial coadjoint orbits are of codimension 2.

The paper is organized into 6 sections, including this introduction. In Section
2, we will recall some basic preliminary concepts, notations and properties
which will be used throughout the paper. In Section 3 and Section 4, we will
give the classification of 1-step solvable Lie algebras whose non-trivial coadjoint
orbits are of codimension 2 [Theorem 3.1, Theorem 4.7]. In Section 5, we will
study the case of such 2-step solvable Lie algebras [Theorem 5.1], and complete
the results in Sections 3 and 4. Tables containing a list of results are provided
in the last section.

2. Preliminaries

We now introduce some key definitions, notations and terminologies. For
more details, we refer the readers to [9].

e Throughout this paper, the underlying field is always the field R of real
numbers and n is an integer > 2 unless otherwise stated.

e For any Lie algebra G and 0 < k € N, the direct sum G @ R” is called
a trivial extension of G.

e A Lie algebra (G, [-,]) is said to be i-step solvable or solvable of degree
i if its i-th derived algebra G := [G~1, G'~1] is commutative and non-
trivial (i.e., # {0}), where G% := G and 0 < i € N.

e An n x n matrix whose (i, j)-entry is a;; will be written as (@;j)nxn-
While the (7, j)-entry of a matrix A will be denoted by (A);;. The
transpose of A will be denoted by A!. For an endomorphism f on
a vector space V of dimension n, the matrix of f with respect to a
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basis b := {x1,...,z,} of V will be denoted by [f]p. For short, if
U := (zk,...,2n) is the subspace of V spanned by {x,...,z,} and if
g : U — U is a linear endomorphism on U, then the notation [g], will
be used to denote the matrix of g with respect to the basis {zg,...,z,}
of U.

e As usual, the dual space of V' will be denoted by V*. It is well-know
that if {z1,%2,...,2,} is a basis of V, then {z7,...,z}} is a basis of
V*, where each z is defined by z}(z;) = d;; (the Kronecker delta
symbol) for 1 <4i,5 < n.

e For any =z € G, we will denote by ad, the adjoint action of z on G,
i.e., ad, is the endomorphism on G defined by ad,(y) = [z, y] for every
y €G. By ad; and adi, we mean the restricted maps of ad,, on G and
G2, respectively. Since G' and G? are ideals of G, ad’, and ad? will be
treated as endomorphisms on G! and G2, respectively.

e In this paper, we will use the symbol I to denote the 2 x 2 identity
matrix, and use J to denote the following 2 x 2 matrix [_01 (1)] We
shall denote by 0 the zero matrix of suitable size.

Definition 2.1. Let G be a Lie group and let G be its Lie algebra. If Ad :
G — Aut(G) denotes the adjoint representation of G, then the action
K: G— Aut(g")
g— K,
defined by
K, (F)(z) = F(Ad(g~")(x)) for FEG*, 2 €G.
is called the coadjoint representation of G in G*. Each orbit of the coadjoint
representation of G is called a coadjoint orbit, or a K-orbit of G.
For each F' € G*, the coadjoint orbit for F' is denoted by Qp, i.e.,
Qp = {KQ(F) 1g € G}
The dimension of each coadjoint orbit is determined via the following proposi-

tion.

Proposition 2.2 ([9]). Let F' be any element in G*. If {z1,22,...,Tn} is a
basis of G, then
dim Qp = rank (F([xi,xj]))nm.

Remark 2.3. The dimension of each K-orbit Q2 is always even for every F' € G*.
Moreover, dim Qg > 0 if and only if F|g1 # 0.

As mentioned in previous section, this paper is concerned with Lie algebras
whose non-trivial coadjoint orbits are all of the same dimension.

Definition 2.4 ([4,17]). An MD-group is a finite-dimensional, simply con-
nected and solvable Lie group whose non-trivial coadjoint orbits are of the
same dimension. The Lie algebra of an MD-group is called an MD-algebra.
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An MD-algebra G is called an MDg(n)-algebra if dimG = n and the same
dimension of non-trivial coadjoint orbits is equal to k.

One of the most interesting characteristics on this class is about the degree
of solvability which is proven by Son & Viet [17].

Proposition 2.5 ([17]). If G is an MD-algebra, then the degree of solvability
is at most 2, i.e., G3 = {0}.

Therefore, the problem of classification of MD-algebras falls naturally into
two parts: (1) the classification of 1-step solvable ones, and (2) the classification
of 2-step solvable ones. However, if G is a 2-step solvable MD-algebra, then
G/G? is a 1-step solvable MD-algebra [6, Theorem 3.5]. Hence, we should firstly
study some interesting properties of 1-step solvable MD-algebras.

Proposition 2.6 ([6]). Let G be a 1-step solvable Lie algebra of dimension n
such that its non-trivial coadjoint orbits are all of codimension k. If dimG! >
n—k+1, then G is isomorphic to the semi-direct product L@, G', where L is
a commutative sub-algebra of G and p is defined by

p: LX Gt —» gt
(z,y) = [=y].
Moreover, if G is 1-step solvable, then [[x,y],z] = 0 for every z,y € G,

z € G1. Tt follows immediately from the Jacobi identity that adiadi = adllladi
for every z,y € G.

Lemma 2.7. If G is 1-step solvable, then {adi, cx € G} is a family of com-
muting endomorphisms.

It is well-known that an arbitrary set of commuting matrices over an al-
gebraic closed field may be simultaneously brought to triangular form by a
unitary similarity [12,13]. A similar version for the case of the real field is
given in the following proposition.

Proposition 2.8. Let S be a set of commuting real matrices of the same size.
Then S is block simultaneously triangularizable in which the mazximal size of
each block is 2. In other words, there is a non-singular real matrix T so that

*92%x2

*
TST-1 = *2x2
0

k

where each block xq2 is of the form [_“b 2} for some a,b € R (b is not necessary
to be non-zero).
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The following lemma is a straightforward but useful consequence of Propo-
sitions 2.6, 2.8 and Lemma 2.7.

Lemma 2.9. Let G be a 1-step solvable MD,,_o(n)-algebra such that m :=
dim G! is strictly greater than 2. Then there is a basis b := {x1,...,2,} of G

so that
o G = (Ty_mi1,...,Ty) is commutative,
o [z;,2;] =0 for every 1 <i,j <n—m,
e The matrices [adil]b, [adi.z}b, ce [ad;-n,m]h are of the block triangular
form in the sense of Proposition 2.8.

Remark 2.10. In the above lemma, we can choose b so that the space £ in the
semi-direct sum £ @, G' of G is spanned by {z1,...,2,—m}. If so, for each
F e g,
0 Pr
(F (e = |3y ']
where Pp is an (n — m) x m matrix which is defined by:
(Pr)ij = F ([2s, Tnm+;]) -
By Proposition 2.2,
dim Qp = 2rank (Pp) for every F € G*.
Finally, if G is an MD,,_5(n)-algebra, then G/G? is an MD,,_5(n — dim G?)-
algebra [6, Theorem 3.5]. Hence, we should recall here the classifications of

MD,,_1(n)-algebras and MD,, (n)-algebras which are solved by Ha et al. [6] and
Son & Viet [17], respectively.

Proposition 2.11 ([6]). Let G be a real MD,,_1(n)-algebra with n > 5. Then
G is isomorphic to one of the followings:

(1) A trivial extension of aff(C), namely R@aff(C), where aff(C) := (x1, 22,

Y1,Y2) s the complex affine algebra defined by

[z1,91] =y, [21,92] = v2, [22,51] = —y2, [z2,92] = 1.
(2) The real Heisenberg Lie algebra
bom+1 = (Tiyi,z:0=1,...,m), (m>2),

with [z;,y;] = z for every 1 <i <m.

(3) The Lie algebra
5,45 1= (T1,T2,Y1,Y2, 2),
with
[21,y1] = w1, [21,92] = w2, [21, 2] = 22, [w2, 1] = y2, (w2, y2] = —y1, [y1, 2] = 2.

Proposition 2.12 ([17]). Let G be a real MD,,(n)-algebra. Then G is isomor-
phic to one of the following forms:

(1) The real affine algebra aff(R) := (x,y) with [z,y] = y.
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(2) The complex affine algebra aff(C) defined in Proposition 2.11.

Remark 2.13. Note that the dimension of any coadjoint orbit is even [Remark
2.3], therefore if G is an MD,,_s(n)-algebra, then n must be even. The case
n = 2 is trivial. The case n = 4 is solved completely in [19]. Namely, up to
an isomorphism, in the MD(4)-class there are 5 decomposable algebras and 8
indecomposable ones as follows:

(1) The decomposable case:
(i) aff(R) ® R2.
(ii) s3®R, where 53 € {ns 1, §3.1, §3,2, 53,3}, 1.€., §3 is a non-commuta-
tive solvable Lie algebra of dimension 3 according to the notation
of [16].
(2) The indecomposable case: N4 1, §4.1, 54,2, 54,3, 54,4, 54,5, 54,6, 54,7 aC-
cording to the notation of [16].

Hence, to completely classify the MD,,_s(n)-class, we only have to consider
the remaining case when n > 6. Therefore, unless otherwise stated, we make
the assumption n > 6 from now on.

3. One-step solvable MD,,_5(n)-algebras with dim G* > 3

According to Proposition 2.5 and Lemma 2.9, the classification of MD,, _5(n)-
algebras falls naturally into three problems:

e The problem of classification those 1-step solvable algebras which have
the derived algebra of dimension at least 3.

e The problem of classification of those 1-step solvable algebras which
have the derived algebra of dimension at most 2.

e The problem of classification of those 2-step solvable algebras.

We will solve the first item in this section. The remaining items will be solved
in the next sections.

Theorem 3.1. Let G be a 1-step solvable MD,,_o(n)-algebra of dimension n >
6 and dim G* > 3. Then n = 6. Furthermore, if G is indecomposable, then G is
isomorphic to one of the following families: s¢.211, 56,225, 56,226, 5672281 listed
in [16]. These algebras are described in Table 4 at the end of the paper.

Remark 3.2. If G is a decomposable MD,(6)-algebra, then G is a trivial ex-
tension of either an indecomposable MDy(5)-algebra or an indecomposable
MDy,(4)-algebra [6, Theorem 3.1]. These indecomposable MD-algebras are clas-
sified in [17,20,22]. Based on their classification, there are exactly one inde-
composable MDy(4)-algebra aff(C) and exactly one indecomposable MDy(5)-
algebra s545 in Proposition 2.11. Hence, if G is a decomposable MD,(6)-
algebra, then G is either isomorphic to R? @ aff(C) or isomorphic to R & 85 45.

1Some algebras contained in families listed in [16] are not MD-algebras, we will give the
details of Lie brackets of these Lie algebras (which are MD-algebras) in the final section.
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In order to prove Theorem 3.1, we will need the following lemma.

Lemma 3.3. Let f,g be two commutative endomorphisms on R*, i.e., fog =
go f. Assume that the matrices of f and g with respect to a basis b are equal

’ R U

where Ay, Ay, By, By are 2 x 2 matrices. If either det(B? 4+ 1) # 0 or det(A; —
I) # 0, then there is a basis b’ of R* so that

v = Lo 9] =% 9]

Proof of Lemma 8.3. Let’s denote the vectors in the basis b by {y1, y2, ys, ¥4}
o If det(B? + I) # 0, then we first claim that there are a, 3,7, € R so that

g -mem s

Indeed, the above system is equivalent to

=] )

MR

=B e 3]
e 3] = [(Ee] - m 3]

The existence of a, 3,7, d follows from the non-singularity of B? + I.
Let b’ := {y}, v, 95,94} be a basis of R* defined by:

or

Y1 = Y1, Yo = Y2,
ys = y3 + ayr + By,
Yy = Ya + Y1 + 0y

Then the matrices of f and g with respect to b’ are determined as
AL AL _|B1 0
e P

for some 2 X 2 matrix Aj. Moreover,

fog:gof<:>A/2><J:Bl><A12<:>
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Hence,

L] =~ [

> (A5)11| _ [0
e+ = o]
which implies, from det(B? + I) # 0, that A, = 0.

e By the same manner as previous item, if det(A; — I') # 0, then there exist
a, 3,7,6 € R so that

(A4 — 1) [g }} = —A,.

Equivalently, the matrix of f with respect to the basis b’ := {y1, y2,ys + ay1 +
By, ya + yy1 + 0y2} is equal to [’%1 %]. Once again, the commutation of f
and ¢ implies that the matrix of g with respect to b’ is equal to [Bl 9] This

0
completes the proof of the lemma.

Now, we begin to prove Theorem 3.1. The proof falls into three parts.
Firstly, we will prove that dimG = 6, and dim G! < 4. Secondly, we will prove
that there is no an MDy4(6)-algebra with dim G! = 3. Thirdly, we will classify
MD,(6)-algebras with dim G! = 4.

Proof of Theorem 3.1. Let’s denote by m the dimension of G! (m > 3) and let
b be a basis of G which satisfies all conditions in Lemma 2.9. If so,

x:([xl, Tp-m+1]) I;([Ilv Tn_m+2)) T x:([xl, Tp))
P oy ([22, p—m+1]) (T2, Znomy]) - 2 (w2, 2a])
Ty ([Tn—m, Tnoms1])  T5h([Tnems Tn—my2]) -+ 5 ([Tnom,Tn])
Because the matrices [ad’ ooy [adglcn_m]b are of block triangular form in

the sense of Proposition 2.8, they are of the form

[ x v
[a“dl"i]b_|:0 Z]me7

where Z is either of size 1 x 1 or of size 2 x 2. Therefore, for every ¢ =
1,2,...,n—mand j=n—m+1,...,n—2, the Lie bracket [z;,x;] is a linear
combination of @y _m41,...,2n—1. It follows that x} ([z;,z;]) = 0 for every
i=1,2,...,.n—mand j=n—m+1,...,n— 2. In the other words, the first
(m — 2) columns of P, are equal to zero. Hence,

rank (Pp« ) < 2.

By Remark 2.10, we obtain dim {2, < 4. Since each non-trivial coadjoint orbit
of G is of dimension n — 2, we get n — 2 < 4, i.e., n < 6. By the assumption,
n > 6. Therefore, n must be 6. In particular, m = dimG! < dim G = 6.

Now, we will prove that m < 4. Assume the contrary that m = 5. Then all
but the first row of PI; is zero. This turns out that dim Qz; < 2, a contradiction
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to the fact that every non-trivial coadjoint orbit of an MD,,_s(n)-algebra is of
dimension n — 2. Hence, 3 < m < 4.

However, if m = 3, then there is at least one block of size 1 in the triangular
form of the matrices {[adgl“]b 1 =1,2, 3}. In the other words, we may assume
that

N S N ki IR I

aq ag as

for some a1, as9,a3 € R. If so,

0 0 al
Pzg =10 0 a2
0 0 as

which must have rank 1, or dim {2, = 2, a contradiction. Therefore, m = 4.
Finally, let’s classify MD,4(6)-algebras. By rewriting

1 A A 1 By B
lad,, Jo = {0 AJ and [ad,,Jo = [0 BJ ,

we have four possibilities for the 2 x 2 matrices A3, B3 as follows:

e Az and Bj are both of triangular form, i.e., (A3)21 = (Bs3)21 = 0.

e A3 =)\, and B3 = [_“Cﬂ for some A\, u € R, 0# ¢ € R.

o A3 = {_"Cﬂ and Bz = Al for some A\, u € R, 0 #£ ( € R.

o A3= {—)\n z] and B3 = {_”C i] for some A\, n, 1, € R with  #£ 0, ¢ # 0.

Remark that the change of basis 1 — 1 — %xg and the change of basis

1 <> x2 bring, respectively, the fourth item and the third item to the second
item. Hence, it is sufficient to consider only the two first possibilities. However,
if A3 and Bj are both of triangular form, then

and hence, rank (P,:) = 1, or dim Q,» = 2, a contradiction again.
Therefore, it suffices to consider the second item only:

If so, by the same manner, we obviously obtain A # 0. Now, by the following
change of basis:

T — %Zl,

Ty — %(1'2 — pxy),

we may assume A =1, y=0and ( = 1.
Hence, without loss of generality, we may assume from beginning that

1, _ |41 A 17 _ |B1 B2
[adxl]b - |:0 I:| ) [a‘dxg]b - [0 J:| .

Similarly, we have two possibilities for the forms of A; and B; as follows:
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e A; and B; are both of triangular form, i.e., (A1)2; = (B1)21 = 0.
o A — {}nz} and B; = [_“Cﬂ with n? + ¢ # 0.
However, if A; and B; are both of triangular form, then det(B? + I) # 0.

It follows from Lemma 3.3 that we may assume A; = By = 0. If so, it is
elementary to check that

{ zi([z1,25]) =
zi([r1,23]) =

Therefore,

which has rank exactly 1. Hence, dim {2,» = 2, a contradiction again.
In summary, we may assume that

MAnJ A I+¢J B .
[adil]b = |: On 12:| , [adiz]b — |:lu OC J2:| Wlth ,'72 +<2 # 0.

Besides, it is elementary to check that

detOM +nJ —1)=0< (\,n) = (1,0),
{ det ((ul +¢J)*+1) =0 <= (p,¢) = (0,%1).

Hence, in light of Lemma 3.3, we shall split the rest of the proof into two cases
as followings:

(1) Case 1: Ay = I and By = %J. If so, by the following change of basis:
x4 — —x4 if necessary, we can assume that By = J. In the other words,

[ady Jo = [(I) /}2] , [adl o = [g 62] .

By the following change of basis: x5 — x5+ (B2)1223+ (B2)224, we can assume
(B2)12 = (B2)22 = 0. If so, the commutation of audglg1 and adgl62 implies that

(A2)11 = (A2)227 (A2)12 = _(A2)21-

In the other words, we can assume that

10 v 0 0 1 x 0
i, |01 =0 v 17, -1 0 w 0
pdado=1g o 1 of P=le=1]¢ o o 1
00 0 1 0 0 -1 0

Let’s denote this Lie algebra by L(v,0, x,w). Then, via the following change
of basis:

x3 = (x tw)zs — (x — w)xy,
z4 = (X —w)rz + (X +w)r,
Ts — Ts — T + XT3 + Wxy,
e — Ts + g,

(if X2+ w? £ 0),
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we easily see that
(3.1) L(v,0,x,w) = L(r,0,1,0)  (if x* +w? #0).

Remark that by basis changing: x3 — —x3 if necessary, we can assume that
v >0.
Similarly, via the following change of basis:

T3 — VT3 — 91’4, e 2 2
{ T4 — O3 + vy, (if v7 4 6% 7 0),

we easily see that

(3.2) L(v,6,0,0) = L(1,0,0,0)  (if v* 4+ 62 # 0).

In summary, we conclude from the equations (3.1) and (3.2) that
L(0,0,0,0) if 2 +60%2 =x2+w? =0,

L(v,0, x,w)=< L(1,0,0,0) if V2 4+ 62 #0, and x%2 +w? =0,

L(v,0,1,0) (with v >0) if x? +w? #0.

Remark that L(1,0,0,0) and L(v,0,1,0) (with v > 0) are, respectively, isomor-
phic to 86,211 and 8¢ 295 listed in [16]. While L(0,0,0,0) belongs to the family
56,226 listed in [16}

These algebras are described in Table 1.

TABLE 1. Indecomposable 1-step solvable MD,,_o(n)-algebras
G which have n > 6 and dimG* > 3 (Case 1).

Algebras Non-trivial Lie brackets Notes
[', } T3 Ty Is Te
56,211 1 T3 | Tq | Ts+ T3 | Te+ X4
ZTo —X4 | T3 —Zg Ts
[', } T3 Ty s Ze
56,225(v, 0) 1 T3 | ®y | x5 +ves —0xy | xg+0x3+vey | v>0
T2 —Ty4 | T3 —Te + T3 Ts
[ ] T3 Ty T5 | T
56,226 (A, 1, €) Ty Axs3 ATy T5 | T A=C=1,u=0
Ty | pw3 —CTq | (T3 + pTs | —T6 | Ts

(2) Case 2. Either A; # I or By # £J. If so, we can assume that
Ay = By = 0 [Lemma 3.3], or

M+nJ 0 I+¢J O .
aat Jo = M G| kg = P15 G] wien? 4 2 20

Let’s denote the corresponding Lie algebra as L(\, 7, i, (). Then for any F' =
az] + -+ asxf € G*, we have
Aaz —nay mas+Aag  as  ag
Pr = .
pas —Cay  Cas + pag —ag  as
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Therefore, rank (Pr) = 2 for any F' € G* with F|g:1 # 0 if and only if A\( —un #
0. In the other words, L(\, 7, 1, ) is an MDy4(6)-algebra if and only if

(3.3) AC — pm # 0.

Furthermore, by the following change of basis:

1 — ﬁ((ﬂh — nr2),
To — ﬁ(*#iﬂl + Axa),
T3 < Ts,

T4 & Tg,

we can see that

(3.4)

¢ . p A
A C—pn” AC—pm’ A —pn’ A — pn

LA, p1,€) = L( ).

Similarly, by the following change of basis: x4 — —x4, we get

(35) L(A7nv,u7<) = L(Aa _’r]a,ua_C)a
and by the following change of basis:
T9 — —T2,
Ty — —T4,
Ts — Tg,
Te — Ts,
we get
(36) L()\JLM»C) = L()‘a =1, _;vaC)'

(3.7)

e If n = 0, then it follows from the equation (3.3) that A\{ # 0. Hence,
the equation (3.4) becomes

1 —u 1
L()\0 ~L(=,0,—, ).
( ) ) ILL7 C) ()\ 3 ) )\C 9 C)
By combining the equations (3.5), (3.6) and (3.7), we obtain

L()\7 07 /”L7 C) g L(A/7 07 /”Ll7 C/)7
where 0 < ¢/ <1, ¢/ >0, N # 0; and if ' = 1, then |[X| < 1. This
class of MD-algebras coincides with the family sg 226 in [16], except
some non MD-algebras cases. Hence, we also use the notation s¢ 226 to

denote this class.
e If 5y £ 0, then by the same manner, we obtain

L, p, Q) = LN 0, 1, (),
where M5/ — /¢’ > 0 and p/ > 0. This class of MD-algebras coincides

with the family sg 228 in [16], except some non MD-algebras cases.
Hence, we also denote this class by s¢ 20s.

In this case, these algebras are described in Table 2.
The proof is completed. (I
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TABLE 2. Indecomposable 1-step solvable MD,,_o(n)-algebras
G which have n > 6 and dimG* > 3 (Case 2).

Algebras Non-trivial Lie brackets Notes
[ 3 Ty z5 | T6
’ A#0,10>0,0<(¢<1
56,226()‘7,“7C) Ty )\.’ﬂg )\I4 Iy Te {f?f ;h ‘)\‘i 1
Ty | prg —C(xg | (T3 + pxy | —Tg | Ts 6= 4 ten Al =

[ 3 T4 T5 | Te
s6,228( A\ p,m,C) | 1 | Axz —maa | w3 FAza | x5 |26 | AC—pn>0,u0>0
To | pxy — (T | Cx3+ pxy | —x6 | 25

4. One-step solvable MD,,_»(n)-algebras which have
low-dimensional derived algebras

In order to obtain a complete classification of 1-step solvable MD,,_5(n)-
algebras, we need to solve the problem for dimG' < 2. The classification
of Lie algebras which have low-dimensional derived algebras has been studied
by T. Janisse [7], C. Schébel [15], Vu A. Le et al. [10], F. Levstein & A. L.
Tiraboschi [11], and C. Bartolone et al. [2].

Proposition 4.1 ([7,10,15]). Let G be a real n-dimensional Lie algebra with
n > 5.
o IfdimG' <2, then G is commutative.
o IfdimG! =1, then G is an trivial extension of either aff(R) or ha,i1
(n>2m+1,m>1).
o IfdimG! =2 and G' is not completely contained in the centre C(G) of
G, then G is isomorphic to one of the following forms:
(1) g5+2k; = <(,I?1, o, ... ,£U5+2k> (n =b5+2k,k € N) with [1‘3,274] =2

and
[x3,71] = [24, 5] = - = [Tagor, T5y2k] = T2
(i) Gotor,1 = (T1,22,...,Te12k) (0 =6+ 2k, k € N) with [x3,21] =
x1 and
[x3,74] = [5,26] = - = [T512k, To2k] = T2

(111) g6+2k,2 = <£L’1,£L’2, .. ~;x6+2k> (n =6+ Qk‘,k S N) with [1'3,1'4] =
x1 and

[23,21] = [25,26] = - = [T542k, To12k] = 22

(iv) aff(R) @ bami1 (m > 1).

(v) A trivial extension of one of Lie algebras listed above in (i), (ii),

(it) and (iv).

(vi) A trivial extension of aff(R) @ aff(R).

(vil) A trivial extension of a Lie algebra H of dimension less than 5
such that dim H' = 2 and H' is not contained in the centre of H.
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It is easy to see that Gsiok, Go+2k,1, Go+2k,2, aff(R) @ hapq1 and any trivial
extension of aff(R) @ aff(R) listed above are not MD-algebras for every k. For
example, G510 has a coadjoint orbit of dimension 2 and a coadjoint orbit of
dimension 4 + 2k:

Corollary 4.2. Let G be an MD,,_o(n)-algebra with n > 6.

o IfdimG! =1, then G is isomorphic to oy 1 © R, where m = "7*2
s ol
. [f{ gllmggo(_g? , then G is isomorphic to aff(C) @ R2.
Now, we will investigate the remaining case:
dimG! =2,
gt C C(9).
Firstly, it is easy to check that G! C C(G) if and only if G is 2-step nilpotent,
ie., Gy := [[G,G],d] is trivial (a 2-step nilpotent Lie algebra is also called a

metabelian Lie algebra).

Because G is 2-step nilpotent with dim G! =2, there is a basis b:={z1,...,7,}
of G such that G! = (z,,_1,7,,) and [z, 2,,_1] = [2;,7,] = 0 for all i. Therefore,
G determines a pair of (n—2) x (n—2) skew-symmetric matrices (M, N) defined
by

(M)ij = 2y ([, 25]); (N)ij = 2y, ([, 75)).

Since dimG' = 2, M and N are linearly independent in the sense that there
is no (0,0) # («, ) such that aM + SN = 0. The matrices (M, N) are called
the associated matrices of G with respect to the basis b (we also say that G is
associated by the matrices (M, N) with respect to b). Conversely, let (M, N)
be any pair of skew-symmetric matrices of size (n — 2) x (n — 2) which are
linearly independent. Then we can define a Lie algebra G of dimension n as
follows: G is spanned by a basis {z1,...,z,}, and the Lie brackets are defined
via that basis as follows:

[xiaxn—l] - [miamn] =0 1<:< n,

[xi,xj] = (M)ijzn—l + (N)ijzn 1 S Z,j S n — 2
In 1999, F. Levstein & A. L. Tiraboschi [11] proved the correspondence between
the isomorphism of two such 2-step nilpotent Lie algebras with the (strict)

congruence of vector spaces spanned by their associated matrices, as stated in
the following proposition.

Proposition 4.3 ([11]). Let G and G’ be two 2-step nilpotent Lie algebras which
have dim G! = dim G'* = 2. Suppose that G and G' are associated (with respect
to some bases) with (M, N) and (M',N'), respectively. Then G is isomorphic
to G’ if and only if there is a nonsingular matriz T so that

T (M,N)-Tt = (M',N').
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In particular, if the pencils M —pN and M’ —pN’ are strictly congruent, i.e.,
there is a nonsingular matrix 7' (which does not depend on p) so that T'(M —
pN)Tt = M'—pN’, then their associated Lie algebras are isomorphic. Although
the converse of the later statement is not true in general, the statement is still
useful to classify Lie algebras in this paper. The classification (up to strict
congruence) of pencils of complex/real matrices which are either symmetric
or skew-symmetric was solved by R. C. Thompson [18] (the skew-symmetric
case was classified in [14]). Because we are concerning with real skew-symmetric
matrices, we will state his theorem for the case of pencils of real skew-symmetric
matrices only.

Proposition 4.4 ([18, Theorem 2]). Let A and B be real skew-symmetric
matrices. Then a simultaneous (real) congruence of A and B exists reducing
A — pB to a direct sum of types m, oo, «, and 3, where

| 0 Le(p) — 0 Ay — pAy
m = [Le(p)t 0 :|,OO-— |:Af+PAf 0 s
o [ 0 (a=p)Bg+4g] 5 _[ O Fh(p)}
. (a+p)Ag— Ay 0 T —T'n(p) 0
with
p . 0
1
Le(p) = 7Af L aAf - )
-P 1
xf
1 (e+1)xe 0 1 fxf
and
R
0 S
_ R S _ c d—p |01
Fq(f)) - R 7R_|:dp C:|’S |:1 O:|
s 0
r s

- gxg

for some a,c,d € R:c#0.

We can now return to the problem of classification of such 2-step nilpotent
MD-algebras. According to Proposition 2.2, dimQp = rank (F([z;,z;])), ..,
for every 0 # F := Az},_, + px), € G*. Hence, G is an MDy(n)-algebra if and
only if rank (AM + uN) = k for every (0,0) # (A, 1) € R2. Moreover, the type
[ is the unique nonsingular type among the types m, 0o, «, 8 in the sense that
every non-zero matrix of the type 8 is nonsingular. This proves the following
proposition.

Proposition 4.5. Let G be a 2-step nilpotent MD,,_o(n)-algebra such that
dim G = 2. Then there is a basis b := {x1,...,2,} of G so that [x;,x,_1] =
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[z, ] = 0 for every i and the associated pencil of G with respect to b is equal
to a direct sum of matrices of the form B defined in Proposition 4.4.

Corollary 4.6. If G is a 2-step nilpotent MD,,_o(n)-algebra which has dim G!
=2, then n — 2 is divisible by 4.

Proof. 1t is straightforward from the fact that the type g is of the size (2¢g) x (2g)
where 2 divides g. ([l

Note that a proof of this corollary was given in Differential Geometry [8,
Proposition 3.
Now, we will give illustrations for n = 6 and n = 10.
e Let n = 6. Then there is a basis {z1,22,...,26} of Gg such that
G¢ = (x5, 76) and

0 0 b a 00 0 -1
($5([$i’mj]>)4><4 Ty —a 0 0] (xG([xi7xj]))4><4 “1o1 0 0
—-a b 0 O 1 0 O 0

for some non-zero b € R. By applying the change of basis:

T — AT5 — Tg,
{ Ty —r b$5,

we can assume a = 0 and b = 1. This Lie algebra is isomorphic to ng 3
listed in [16].

e Let n = 10. Then there is a basis {z1,22,...,210} of G such that
G' = (xg,10) and the associated pencil M — pN := (x§([z;, 2;]))g, 5 —
p (270([7i, 2;]))g, g is either a direct sum of two 4 x 4 blocks of the type
B or just an 8 x 8 matrix of the type 5. Hence, we have either

[ 0 0 b1 ay —p ]
0 0 ay —p —b1
—by —a1+p 0 0
. _|=a1+p by 0 0
M —pN = 0 0 by az—p
0 0 az — p *bg
—b2 —az — p 0 0
L —az — p b2 0 0 i
or
T 0 0 0 0 0 0 b ar—p)
0 0 0 0 0 0 ai—p —b
0 0 0 0 bi  ai—p O 1
_ _ 0 0 0 0 a —p —b1 1 0
M=pN=1 0 b —ar—p O 0 0 0
0 0 —a; —p b1 0 0 0 0
b —ai—p 0 1 0 0 0 0
—ai—p b -1 0 0 0 0 0 |
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for some non-zero by,bs € R. Equivalently, G is isomorphic to one of
the following forms:

(i) Gio1(a1,b1,a2,b2) := (21,22, ...,210) With [z, 29] = [24,210] = 0
for all 7 and
T2 T3 Ty Ts5 | Te x7 g
T 0 bll'g aixrg — T10 0 0 0 0
X9 a1Tg — I10 —b1$9 0 0 0 0
T3 0 010 0 0
T4 010 0 0
xTs 0 le‘g agTg — T10
T a2T9 — T19 —baxg
T 0
(b1bs £ 0)

If so, by the change of basis:
Ti 4 Tigq 10 E {1,273,4},

we easily see that

(4.1) Gio,1(a1,b1,a2,b2) = Gio.1(az,ba, a1, b1).
Similarly, by the following change of basis:
{ T10 —» —@1T9 + T10,
T9 — b1g,
we obtain
(4.2) Gio,1(a1,b1,az,b2) g910,1(0,1,azb;lal,%)

We conclude from the isomorphism (4.1) that we always can as-
sume 0 < |by| < |by1|, and from the isomorphism (4.2) that a; =
O,bl = 1, i.e.,

Gro,1(a1,b1,a2,b2) = Gio,1(0,1, 1, A) (0 < [N <1).
(ii) Gio2(a1,b1) = (@1, 22, ..., x10) With [x;, 9] = [z;,210] = 0 for all
i and
T2 | T3 | T4 Ts Te x7 T8
T 0 0 0 0 0 bll’g airg — 10
To 010 0 0 a1T9 — T1o —bixg
I3 0 bll'g a1x9g — X190 0 T9
T4 a1T9 — T1o —b1g T 0
5 0 0 0
Te 0 0
X7 0
(b1 #0)

By the change of basis: 19 — a1x9 — x10, We easily see that

Gio,2(a1,b1) = Gi0,2(0, )

In summary, we have proven the following theorem.

(X #0).
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Theorem 4.7. Let G be an MD,,_o(n)-algebra of dimension n > 6 with dim G!
< 2.
(1) If diim G = 1, then G is isomorphic to R @ oy 11, where 2m = n — 2.
Note that this algebra is 2-step nilpotent.
(2) If dim G = 2 and G is not 2-step nilpotent, then G is isomorphic to
R? @ aff(C).
(3) If dimG! = 2 and G is 2-step nilpotent, then n = 4k + 2 for some
k € N, and the associated pencil of G is a direct sum of type B. In
particular,
e Ifn =6, then G is isomorphic to ng 3 which is defined in [16] and
described in Table 6.
o [fn =10, then G is isomorphic to one of the following families:
G10,1(0,1, 11, A) (0 < |A] < 1) and Gi10,2(0,A) (A # 0) defined in
Table 6.

5. Two-step solvable MD,,_,(n)-algebras

Finally, to complete the classification of MD,,_s(n)-algebras, we only need
to classify 2-step solvable MD,,_5(n)-algebras with n > 6. Surprising, such a
Lie algebra is decomposable and has dimension exactly 6.

Theorem 5.1. Let G be a 2-step solvable real Lie-algebra whose non-trivial
coadjoint orbits are all of codimension 2. Then G is isomorphic to R @ s5 45.

Proof. Recall that for every x,y, z € G, we have:

[, 9], 2] = [z, [y, 2] — [y, [=, 2]]
It follows that
adgady, — adyad, = ad[g -
Hence, for every x € G!, we have
(5.1) trace(ad, ) = trace(adl) = trace(ad?) = 0.

According to Theorem 3.5 in [6], 1 < dim G? < 2. Therefore, we will divide the
proof into two cases:

e Case 1: dimG? =2. If so, H := G/G? is a l-step solvable Lie al-
gebra whose non-trivial coadjoint orbits are all of the same dimension as H
[6, Theorem 3.5]. In the other words, H is an MD,,(n)-algebra. According to
Proposition 2.12, H is isomorphic to either aff(R) or aff(C). Since dimG > 6,
H = aff(C). It implies the existence of a basis b := {x1,x2,y1,¥2, 21,22} of G
such that:

gl :<y17y2a21522>7 g2 == <Zl,22>,
H =(z1,72, Y1, J2) = aff(C),

where

[1‘713 E] = yila [Th%} = E and [TQa 97] = %5 [TQ’E] = —Y-
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Since G! and G? are both ideals of G, the Lie brackets in G can be determined

as follows:
Z1 T2 Y1 Y2 Z1 22
1| 0 | Az +Aozo | w1+ A3z + Mgz Y2 + Asz1 + Ae22 Arz1 + Agze | Agz1 + Arpze
To 0 Y2 + A1121 + A2ze | —y1 + A3z + Aaze | Aiszn + Aieze | Airz1 + Aisze
Y1 0 A1921 + Moo 22 A2121 + Ao2za | Aoz + Aoazo
Y2 0 o521 + Aagza | Aarz1 + Aagze
zZ1 0 0

Since G? is commutative, we can obtain directly from the Jacobi identity that

2 12 _
adylady2 =

2 12 o 5
ad,,ad; . By Proposition 2.8, we can assume that [ad,, |y and

[adzg]b are both either of the diagonal form or of the form al + b.J. Without
loss of generality, we can assume that

2 a 0 2 a b
[adyl]b = |:0 b:| 5 [adyl]b = |:_b a:| )
either 0 or p
c c
[adiz]b = |:0 d] s [adiz]b = |:—d C] .
Moreover, it follows from the equation (5.1) that
trace(adzl) = trace(adflz) =0.
It turns out that
2 a 0 2 0 b
[adyl]b = |:O _a:| ) [adyl]b = |:—b O:| s
either 0 or 0 d
2 c 2
[adyz]b = |:0 _C:l 9 [adyQ]b == |:_d 0:| .

In both cases, there is (0,0) # (), ) € R? so that )\adzl —&—uadi = 0. Now, by
applying the Jacobi identity to (w2, Ay1 + pye, 2) for any 2z € G2, we easily see
that

o2 .32 a2 2 _ 12 o2 2
0 = ady,ad),, 4y, — adiy, 4 uy,8dz, = adiy, g, 4uys) = —pady, + Xady,.

Therefore,

/\ad§1 + ,uaudz2 = —uadil + /\adz2 =0.

This clearly forces adz1 = adZZ = 0, and consequently G2 is spanned by

{[y1,v2]}, a contradiction to dim G = 2. Hence, this case is excluded.

e Case 2: dimG? = 1. If so, H := g/g2 is a 1-step solvable Lie-algebra
whose non-zero coadjoint orbits are of codimension 1. It follows from Propo-
sition 2.11 that H is isomorphic to one of the followings: hami1, R @ aff(C).
Furthermore, if % = b, 41, then dimG! = 2 and dim G? = 1. This is impossi-
ble because G! is nilpotent. Hence, H = R & aff(C).

Equivalently, we can fix a basis {1, 2, y1, Y2, ys, 2} of G so that

{ g1:<ylay2ay3>a g2:<Z>7
H = <%> ©® <(E71,£L'72,E,E>,
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where the Lie brackets in H are the same as those in R & aff(C), i.e.,
[Tla m] = yT? [TD %} = % and [@7 yT] = y727 [@7 %] = _m
It implies that the Lie brackets in G must have the form:

Ty | T2 Y1 Y2 Y3 z
1 Mz | i+ Xz | ya+ A3z | Az | Asz
X9 Y2 + /\GZ —Y1 + )\72 /\SZ /\gZ
Y1 A10% A1z | A2z
Y2 )\13,2 )\142
Y3 )\152}
If so, it follows from the equation (5.1) that

This means [y1, 2] = [ya,2] = 0. Because G2 # {0}, we must have \jg # 0. By
basis changing z — )%mz, we may assume Ajg = 1.
Now, by checking the Jacobi identity to the following triples (x1, %1, y2);
(T2, 1,92); (Y1,Y2,93); (T1,22,¥3); (21,y1,Y3); and (x1, Y2, y3); we obtain
As =2, Ag = A5 = 2XA8 + A1 A15 = A1 + A2 dis = A1z + AsA5 = 0.
Hence,
As =2, Ads =g = A11 = A2 = A1z = Ay = A5 = 0.

By basis changing y3 — y3 — %z if necessary, we get G decomposable. In the
other words, G is isomorphic to a direct sum of R with a Lie algebra G’. Since
G is 2-step solvable, so is G’. Furthermore, non-zero coadjoint orbits of G’ and
G have the same dimension [6, Theorem 3.1]. In the other words, G’ is a 2-step
solvable MD-algebra whose non-trivial coadjoint orbits are all of codimension
1. According to Proposition 2.11, G’ must be isomorphic to s5 45. Equivalently,
G is isomorphic to R & s5 45. This completes the proof. (]

6. Concluding remarks

In summary, the paper has introduced the classification of MD,,_s(n)-class
with 2 <n € N as follows:

e There are 14 different MD,,_s(n)-algebras (up to an isomorphism) of
dimension n < 5 listed in Table 3.

e The subclass of all non 2-step nilpotent MD,,_5(n)-algebras with n > 6
is also classified (up to an isomorphism) and listed in Table 4.

e Table 5 indicates that any decomposable 2-step nilpotent MD,,_»(n)-
algebra with n > 6 is always isomorphic to ha,,+1 PR, where n = 2m+2,
m > 2.

e The remaining subclass of all indecomposable 2-step nilpotent
MD,,_2(n)-algebras with n > 6 is classified by canonical forms of asso-
ciated pencils of matrices, in which algebras of dimension n < 10 are
listed in Table 6.
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In the following tables, {z1, 22, ..

sponding MD,,_5(n)-algebra G.

TABLE 3. List of all MD,,_s(n)-algebras with n = 2, 4.

5

., &y} is used to denote a basis of corre-

n  Algebras Non-trivial Lie brackets Notes
2 R? -
4 ny [ | = z1, [23,24] = 22
54,1 [ ] =Ty, [1’4-,1’3] =3
549 [ | =1, |24, 22] = 21 + @2, T4, 23] = 22 + 23
54,3 [ | = @1, [x4, 2] = oo, (24, 23] = Pas 0<1B8 <ol £1, (o, 8) # (—1,-1)
544 (4, 21] = @1, (24, 2] = 71 + T2, [24, 3] = Q3 a#0
545 (4, 21] = amy, (w4, 2] = Bxs — 3, (T4, 23] = T2+ Pz >0
54,6 [14, 962] = T2, [14-13] —T3
S4.7 (g, xo] = —x3, [24, 23] = X2
aff(R) ®R?  [z1,72] = 22
n31 @R (22, 23] = 21
531 OR (3, 21] = @1, [23, 2] = axa 0<|a) <1
532 @R [x3,21] = @1, [23, 2] = 1 + T2
s33 B R (3, 21] = amy — @2, (w3, 2] = 11 + @z a>0

TABLE 4. List of all MD,,_(n)-algebras with n > 6 which are

not 2-step nilpotent.

dimGT  Algebras Non-trivial Lie brackets Notes
1 There is no MD,,_»(n)-algebra
2 aff(C) & R? [wg, x1] = —w, (X3, 2] = [, 21] = 21, [14, T2] = 22
[ N ] T3 Ty ZIs5 I
>3 56,211 T x3 | x4 | x5+ T3 | Te + X4
Ty | —x4 | X3 —Tg 5
L] ] as | @ T5 Tg
56,225 (v, 0) 71 T3 | 24 | X5 +vwy —0O0xy | w6+ 003 +vT4 | V>0
Ty | —T4 | T3 —Te + T3 Ts5
['-, ] T3 Ty Ts | Te
86,226 (A, 11, C) 71 Az Azy 5 | T {A #0p200<(<1
Ty | px3 — (Ty | (T3 + pUTy | —T6 | Ts F¢=1, then A <1
[ T3 T4 r5 | w6
56.228(A, 1,1, C) Ty | Axs —nry | nrs+Arg | x5 | X6 A —pn>0,u>0
To | prs — (g | (T34 pzy | —26 | X5
[u, ] T T2 T3
T2 0 0 T
5345 OR x4 | 227 | X2 | w3
5 0 |z3 | —x2
TABLE 5. List of all decomposable 2-step mnilpotent

MD,,_2(n)-algebras with n > 6.

n Algebras

Non-trivial Lie brackets

Notes

2m+2, m > 2 hom+1 &R

(T4, Tmyi] = Tama1

Vi=1,...,m

dimGr =1
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TABLE 6. List of all indecomposable 2-step nilpotent
MD,,_2o(n)-algebras with 6 < n < 10.
n  Algebras Non-trivial Lie brackets Notes
6 nega [z1, 73] = x5, [T2, 24] = —5, [¥1, 24] = [w0, 3] = 76
8  There is no indecomposable MDg(8)-algebra
[]] @8 L4 27 T3
zy Tg | —T10 0 0
10 910?1(0, 1,/17/\) T2 —T10 | —T9 0 0 0< |)\‘ <1
Ts 0 0 )\Ig HTg — T10
Te 0 0 HUTg — XT10 —)\1'9
[l =5 L6 Z7 g
x1 0 0 Azg | —T10
910?2 (0, )\) T2 0 0 —X10 */\379 A 76 0
T3 | Arg9 | —T10 0 Tg
T4 —X10 —)\.1‘9 X9 0
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