DOI QR코드

DOI QR Code

CONSTRUCTION OF A MATTILA-SJÖLIN TYPE FUNCTION OVER A FINITE FIELD

  • Daewoong Cheong (Department of Mathematics Chungbuk National University) ;
  • Jinbeom Kim (Department of Mathematics Chungbuk National University)
  • Received : 2022.07.06
  • Accepted : 2022.08.30
  • Published : 2023.07.01

Abstract

Let 𝔽q be a finite field with q elements. A function f : 𝔽qd × 𝔽qd → 𝔽q is called a Mattila-Sjölin type function of index γ ∈ ℝ if γ is the smallest real number such that whenever |E| ≥ Cqγ for a sufficiently large constant C, the set f(E, E) := {f(x, y) : x, y ∈ E} is equal to 𝔽q. In this article, we construct an example of a Mattila-Sjölin type function f and provide its index, generalizing the result of Cheong, Koh, Pham and Shen [1].

Keywords

Acknowledgement

This work was supported by Basic Science Research Programs through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF2021R1I1A3049181).

References

  1. D. Cheong, D. Koh, T. Pham, and C. Shen, Mattila-Sjolin type functions: a finite field model, Vietnam J. Math. 51 (2023), no. 2, 421-434. https://doi.org/10.1007/s10013-021-00538-z
  2. F. Cl'ement and T. Pham, Distribution of distances in five dimensions and related problems, SIAM J. Discrete Math. 36 (2022), no. 3, 2271-2281. https://doi.org/10.1137/21M1447088
  3. X. Du, L. Guth, Y. Ou, H. Wang, B. Wilson, and R. Zhang, Weighted restriction estimates and application to Falconer distance set problem, Amer. J. Math. 143 (2021), no. 1, 175-211. https://doi.org/10.1353/ajm.2021.0005
  4. X. Du, A. Iosevich, Y. Ou, H. Wang, and R. Zhang, An improved result for Falconer's distance set problem in even dimensions, Math. Ann. 380 (2021), no. 3-4, 1215-1231. https://doi.org/10.1007/s00208-021-02170-1
  5. X. Du and R. Zhang, Sharp L2 estimates of the Schrodinger maximal function in higher dimensions, Ann. of Math. (2) 189 (2019), no. 3, 837-861. https://doi.org/10.4007/annals.2019.189.3.4
  6. K. J. Falconer, On the Hausdorff dimensions of distance sets, Mathematika 32 (1985), no. 2, 206-212 (1986). https://doi.org/10.1112/S0025579300010998
  7. A. Greenleaf, A. Iosevich, and K. Taylor, Configuration sets with nonempty interior, J. Geom. Anal. 31 (2021), no. 7, 6662-6680. https://doi.org/10.1007/s12220-019-00288-y
  8. A. Greenleaf, A. Iosevich, and K. Taylor, On k-point configuration sets with nonempty interior, Mathematika 68 (2022), no. 1, 163-190. https://doi.org/10.1112/mtk.12114
  9. L. Guth, A. Iosevich, Y. Ou, and H. Wang, On Falconer's distance set problem in the plane, Invent. Math. 219 (2020), no. 3, 779-830. https://doi.org/10.1007/s00222-019-00917-x
  10. D. N. Hart, A. Iosevich, D. Koh, and M. Rudnev, Averages over hyperplanes, sumproduct theory in vector spaces over finite fields and the Erd˝os-Falconer distance conjecture, Trans. Amer. Math. Soc. 363 (2011), no. 6, 3255-3275. https://doi.org/10.1090/S0002-9947-2010-05232-8
  11. A. Iosevich and D. Koh, Extension theorems for spheres in the finite field setting, Forum Math. 22 (2010), no. 3, 457-483. https://doi.org/10.1515/FORUM.2010.025
  12. A. Iosevich, D. Koh, and T. Pham, New bounds for distance-type problems over prime fields, European J. Combin. 86 (2020), 103080, 11 pp. https://doi.org/10.1016/j.ejc.2020.103080
  13. A. Iosevich and M. Rudnev, Erd˝os distance problem in vector spaces over finite fields, Trans. Amer. Math. Soc. 359 (2007), no. 12, 6127-6142. https://doi.org/10.1090/S0002-9947-07-04265-1
  14. D. Koh, T. Pham, and C.-Y. Shen, On the Mattila-Sjolin distance theorem for product sets, Mathematika 68 (2022), no. 4, 1258-1267. https://doi.org/10.1112/mtk.12165
  15. D. Koh, T. Pham, and L. A. Vinh, Extension theorems and a connection to the Erdos-Falconer distance problem over finite fields, J. Funct. Anal. 281 (2021), no. 8, Paper No. 109137, 54 pp. https://doi.org/10.1016/j.jfa.2021.109137
  16. R. Lidl and H. Niederreiter, Finite fields, second edition, Encyclopedia of Mathematics and its Applications, 20, Cambridge Univ. Press, Cambridge, 1997.
  17. P. Mattila and P. Sjolin, Regularity of distance measures and sets, Math. Nachr. 204 (1999), 157-162. https://doi.org/10.1002/mana.19992040110
  18. B. Murphy and G. Petridis, An example related to the Erdos-Falconer question over arbitrary finite fields, Bull. Hellenic Math. Soc. 63 (2019), 38-39.
  19. T. Pham and L. A. Vinh, Distribution of distances in positive characteristic, Pacific J. Math. 309 (2020), no. 2, 437-451. https://doi.org/10.2140/pjm.2020.309.437
  20. L. A. Vinh, Maximal sets of pairwise orthogonal vectors in finite fields, Canad. Math. Bull. 55 (2012), no. 2, 418-423. https://doi.org/10.4153/CMB-2011-160-x