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CONSTRUCTION OF A MATTILA–SJÖLIN TYPE

FUNCTION OVER A FINITE FIELD

Daewoong Cheong and Jinbeom Kim

Abstract. Let Fq be a finite field with q elements. A function f : Fd
q ×

Fd
q → Fq is called a Mattila–Sjölin type function of index γ ∈ R if γ is

the smallest real number such that whenever |E| ≥ Cqγ for a sufficiently
large constant C, the set f(E,E) := {f(x, y) : x, y ∈ E} is equal to Fq .

In this article, we construct an example of a Mattila–Sjölin type function

f and provide its index, generalizing the result of Cheong, Koh, Pham
and Shen [1].

1. Introduction

The Falconer distance problem concerns the minimal Hausdorff dimension of
compact sets E of Rd such that the Lebesgue measure of the distance set ∆(E)
is positive, where ∆(E) := {|x−y| : x, y ∈ E}. Falconer in [6] conjectured that
for subsets E in Rd, d ≥ 2, if the Hausdorff dimension dimH(E) of E is strictly
greater than d/2, then ∆(E) has a positive Lebesgue measure. Ever since he
used the Fourier analysis machinery to obtain the lower bound (d + 1)/2 for
dimH(E), there has been much progress on this problem by many authors, using
new approaches such as the polynomial method and the decoupling inequalities.
Interested readers can find details in [3–5,9].

In 1999, Mattila–Sjölin [17] posed a much stronger version of the Falconer
distance problem. Namely, they asked for the minimal Hausdorff dimension
dimH(E) of the compact sets E in Rd such that the distance set ∆(E) contains
an interval. We refer to this problem as the Mattila–Sjölin problem. They
conjectured that the minimal Hausdorff dimension would be d/2, which is the
same as that on the Falconer distance problem, and obtained the lower bound
(d + 1)/2 for dimH(E). Since then, the threshold (d + 1)/2 has not been
improved. Several extensions of this result to general configurations have been
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only made (see, for instance, [7, 8]). In a very recent paper, Koh, Pham and
Shen [14] obtained an improvement for Cartesian product sets, namely, when
E = Ad ⊂ Rd for some A ⊂ R.

It is natural to consider the distance problem over a finite field. Over the past
decades, there has been much development in finite field distance problems; see
[10, 12–15,18–20]. Among them, let us only touch on the finite field version of
Mattila–Sjölin problem which has a relation with our result.

For x = (x1, . . . , xd) and y = (y1, . . . , yd) in Fd
q , define

h(x, y) = ||x− y|| :=
d∑

j=1

(xj − yj)
2.

We will call h(x, y) a distance between x and y as they do in the literature.
For E ⊂ Fd

q , define the distance set of E as

∆(E) := {||x− y|| : x, y ∈ E}.

Since ∆(E) is a subset of Fq, we have |∆(E)| ≤ q, where | · | denotes the
cardinality of a set.

Problem 1.1 (The finite field Mattila–Sjölin problem). Let E be a subset of
Fd
q , d ≥ 2. What is the smallest exponent κ > 0 such that ∆(E) = Fq whenever

|E| ≥ Cqκ for a sufficiently large constant C > 0?

For this problem, there is only one known theorem due to Iosevich and

Rudnev [13], which states that if |E| ≥ 2q
d+1
2 , then ∆(E) = Fq. This result is

optimal for the general odd dimensions d ≥ 3 since the exponent (d+1)/2 is the
best possible result for the Erdős-Falconer distance problem [13] in odd dimen-
sions, which calls for much weaker conclusion than the finite field Mattila–Sjölin
problem. For even dimensions, it is believed that the exponent (d + 1)/2 can
be improved but there does not exist a reasonable conjecture. Murphy and
Petridis [18] showed that in dimension two the optimal exponent cannot be
lower than 4/3. It would be interesting to investigate whether the exponent
(d + 1)/2 can be improved. For some specific sets such as product sets, it is
known that the exponent (d+1)/2 can be improved (see, for example, [2,19]).

The distance problem in the finite setting can be extended in various direc-
tions. For example, the distance h(x, y) = ||x− y|| can be replaced by various
‘reasonable’ functions on Fd

q ×Fd
q with values in Fq, for which one can consider

a certain distance type problem. Indeed, Cheong, Koh, Pham, and Shen [1]
gave the following definition.

Definition 1.2 (Mattila–Sjölin type function of index γ). Let f : Fd
q×Fd

q → Fq

be a function. We say that f is a Mattila–Sjölin type function of index γ ∈ R
if γ is the smallest positive real number such that whenever |E| ≥ Cqγ for a
sufficiently large constant C, we have f(E,E) := {f(x, y) : x, y ∈ E} = Fq. In
this situation, we write Index(f) = γ.
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For instance, by what we described right after Problem 1.1, the function
h(x, y) = ||x−y|| is a Mattila–Sjölin type function of index (d+1)/2 when d is
odd. It is not known for the even d. In general, given a function f : Fd

q ×Fd
q →

Fq, it is not easy to find the index of f . The main purpose of this article is
to construct a certain Mattila–Sjölin type function and provide the index of it,
generalizing the result of [1]. Now we describe our result.

Notation 1. Fix positive integers d, ℓ, k such that d ≥ 3 and d = ℓ + k.
Let I = (i1, . . . , iℓ) and J = (j1, . . . , jk) be two subsequences of the sequence
(1, 2, . . . , d) such that as sets

I ∪ J = {1, 2, . . . , d} and I ∩ J = ∅.
For x = (x1, . . . , xd) ∈ Fd

q , write

xI = (xi1 , . . . , xiℓ) and xJ = (xj1 , . . . , xjk),

where I=(i1, . . . , iℓ) and J=(j1, . . . , jk). Especially, we write I0 := (1, 2, . . . , ℓ)
and J0 := (ℓ+ 1, . . . , d), and we use x′ and x′′ for xI0 and xJ0

, respectively.

Definition 1.3. Let I, J be as above. Define Φ = Φ(I, J) : Fd
q × Fd

q → Fq as

(1.1) Φ(x, y) :=

{
||xI−yI ||
||xJ−yJ || if ||xJ − yJ || ≠ 0,

0 if ||xJ − yJ || = 0,

where ||xI − yI || := (xi1 − yi1)
2 + · · ·+ (xiℓ − yiℓ)

2. We shall call Φ a quotient
distance function and Φ(E,E) the quotient distance set generated by E.

Let η be the quadratic character of F∗
q ; see Example 2.1.

Theorem 1.4. Let Φ be a function defined in Definition 1.3. Let m :=
min{|I|, |J |}. Then Index(Φ) can be obtained as follows:

(1) If m is odd, then Index(Φ) = d− m+1
2 .

(2) If m is even and (η(−1))
m
2 = 1, then Index(Φ) = d− m

2 .

(3) If m is even and (η(−1))
m
2 = −1, then Index(Φ) = d− m+2

2 .

We remark that the case where d = 2ℓ is even and I = I0, J = J0 with
|I0| = |J0| was settled in [1], and so our case can be viewed as a generalization
of [1]. Thus, to obtain our result we basically follow the method used in [1],
even though we have to work out more technicalities.

One of the advantages in working with more general functions f in the
finite field setting is that if the function f is an algebraic function, i.e., a
rational function of polynomials, then the distance type problem may have
some connections with other areas in mathematics such as algebraic geometry,
number theory and algebraic combinatorics. For example, if f is an algebraic
function on Fd

q × Fd
q and t ∈ Fq, then the fiber f−1(t) defines a subvariety of

Fd
q × Fd

q if it is not empty. Our mainly concerned quantity νE(t) (in Definition

3.1) is none other than the number of the set f−1(t) ∩ (E ×E). In particular,
if E is a subvariety of Fd

q , then f−1(t) ∩ (E × E) is a subvariety of Fd
q × Fd

q .
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On the other hand, counting (or finding a bound on the number of) elements
of a (sub)variety is one of the typical problems in algebraic geometry over a
finite field. Since our function Φ is algebraic, it would be interesting to try to
produce a similar result, using an algebraic method like the cohomological one.

Convention. Throughout, we keep up the following conventions.

• Fq denotes a finite field with q elements, and of characteristic p, where
p is an odd prime.

• For a set A, |A| denotes the cardinality of A.
• d, ℓ, k are positive integers such that d ≥ 3 and d = ℓ+ k.
• The alphabet E denotes a parameter of subsets of Fd

q .

2. Preliminaries

In this section, we review some basics on the Gauss sum and the discrete
Fourier analysis which will play essential roles in later computations. See [13]
and [16] for these materials. We begin with the definition of a character of a
group. A character ϕ of an abelian group G is a group homomorphism from
G to the multiplicative group C∗. Note that if G is a finite group, the image
of a character ϕ : G → C∗ is in fact in S1 = {z ∈ C∗ | |z|2=1}. In this article,
we shall deal with two cases: G = Fq is an additive group, and G = F∗

q is
a multiplicative group, where F∗

q = Fq \ {0}. We refer to a character of Fq

(resp. F∗
q) as an additive (resp. a multiplicative) character of Fq.

Example 2.1. To give examples of an additive character and a multiplicative
character, let Tr : Fq → Fp be the absolute trace [16, Definition 2.22], where
we assume that p is the characteristic of Fq.

(1) For b ∈ Fq, let χb : Fq → S1 be a function defined by

χb(c) = e2πiTr(bc)/p for all c ∈ Fq, b ∈ Fq.

Then, it is easy to check that χb is an additive character. In particular,
the character χ1 is called the canonical additive character.

(2) To define a multiplicative character of Fq, we recall that F∗
q is a cyclic

group so that we can write F∗
q = {gk | k = 0, . . . , q − 2} for a fixed

generator g of F∗
q . Then, for each j = 0, 1, . . . , q − 2, let ψj : Fq → S1

be a function defined by

ψj(g
k) = e2πijk/(q−1).

Then, it is easy to see ψj is a multiplicative character. In particular,
letting η := ψ(q−1)/2, we have η(c) = 1 if c is a square in Fq, and
η(c) = −1 otherwise. The character η is called quadratic.

Proposition 2.2. All additive (resp. multiplicative) characters can be obtained
as above χb (resp. ψj with respect to a fixed generator g ∈ F∗

q). Namely,

(1) Given an additive character χ, there exists b ∈ Fq such that χ = χb.
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(2) Given a multiplicative character ψ, there exist 0 ≤ j ≤ q − 2 such that
ψ = ψj , i.e., ψ(g

k) = e2πijk/(q−1).

Proof. For the proof of (1) and (2), respectively, we refer to Theorem 5.7 and
Theorem 5.8, respectively, in [16]. □

Characters ofG enjoy the orthogonality property below which will frequently
be used for G = Fq and F∗

q in our computation.

Proposition 2.3 (Orthogonality of characters). Let G be a finite abelian group
and ϕ a character of G. Then if ϕ is nontrivial, then∑

g∈G

ϕ(g) = 0,

and
∑

g∈G ϕ(g) = |G|, otherwise.

The Gauss sum is an exponential sum related to both an additive character
and a multiplicative character. More precisely, it is defined as follows.

Definition 2.4 (Gauss sum). Let ψ (resp. χ) be a multiplicative (resp. an
additive) character on Fq. Then, the Gauss sum of ψ and χ is defined by

(2.1) G(ψ, χ) =
∑
c∈F∗

q

ψ(c)χ(c).

For a ∈ Fq, denote Ga = G(η, χa). G1 is called the standard Gauss sum. The
standard Gauss sum G1 has been explicitly computed.

Proposition 2.5 (Theorem 5.15, [16]). The standard Gauss sum G1 can be
explicitly computed as follows:

(2.2) G1 =

{
(−1)s−1q

1
2 if p ≡ 1 (mod 4),

(−1)s−1isq
1
2 if p ≡ 3 (mod 4).

We remark that by Proposition 2.5 and (2) of Example 2.1, we have

(2.3) G2
1 = η(−1)q, and |G1| =

√
q.

Lemma 2.6. For a, b ∈ Fq with a ̸= 0, and v ∈ Fd
q , we have

(1)
∑

s∈Fq
χ1(as

2) = η(a)G1.

(2)
∑

s∈Fq
χ1(as

2 + bs) = η(a)G1χ1

(
− b2

4a

)
.

(3)
∑

u∈Fn
q
χ1 (a∥u∥ − u · v) = ηn(a) · Gn

1 · χ
(

||v||
−4a

)
.

Proof. To prove (1), we notice that∑
s∈Fq

χ1(as
2) = 1 +

∑
s∈F∗

q

χ1(as
2).
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Since (−s)2 = s2 for any s ∈ F∗
q , by a change of variables, s2 = t, we observe

that

1 +
∑
s∈F∗

q

χ1(as
2) = 1 + 2

∑
t∈F∗

q :
t is a square

χ1(at) = 1 +
∑
t∈F∗

q

χ1(at)(η(t) + 1)

= 1 +
∑
t∈F∗

q

χ1(at) +
∑
t∈F∗

q

χ1(at)η(t) =
∑
t∈F∗

q

χ1(at)η(t).

Here the last equality follows from the orthogonality of characters for χ1. Now,
using a change of variables t = a−1θ and the relation η(a) = η(a−1), we have∑

t∈F∗
q

χ1(at)η(t) =
∑
θ∈F∗

q

η(a)χ1(θ)η(θ) = η(a)G1.

(2) and (3) follow from (1) by completing the square and using a change of
variables. □

2.1. Discrete Fourier analysis machinery

Recall that χ1 : Fq → S1 denotes the canonical additive character. For a
function f : Fn

q → C, the Fourier transform of f is defined by

f̂(α) = q−n
∑
u∈Fn

q

χ1(−u · α)f(u).

We list the finite field versions of basic theorems for Fourier analysis.

Proposition 2.7. Let f : Fn → C be a function. Then we have

(1) (Inversion)

f(u) =
∑
α∈Fn

q

χ1(α · u)f̂(α).

(2) (Plancherel) ∑
α∈Fn

q

|f̂(α)|2 =
1

qn

∑
u∈Fn

q

|f(u)|2.

Given subset A ⊂ Fn
q , let IA be the characteristic function associated with

A, so

IA(x) :=

{
1 x ∈ A,

0 x /∈ A.

For simplicity, we write Â for the Fourier transform ÎA. For instance, if we
take f ≡ IA, then we notice

(2.4)
∑
α∈Fn

q

|Â(α)|2 =
|A|
qn
.
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Moreover, if α = (0, . . . , 0) ∈ Fn
q , then

(2.5) Â(0, . . . , 0) =
|A|
qn
.

The discrete Fourier analysis machinery is very useful in computing the
Fourier transform of certain algebraic varieties over finite fields.

3. Reduction and key lemmas

In this section, we will adapt the so-called counting function argument, due
to Iosevich and Rudnev [13], to make a reduction of the proof of Theorem 1.4.

From here until Subsection 4.4, we work for the case

I = I0 = (1, 2, . . . , ℓ) and J = J0 = (ℓ+ 1, . . . , d),

and so use the notations x′ and x′′ for xI0 and xJ0 , respectively.

3.1. Reduction by the counting function argument

We begin with a notation.

Notation 2. For r ∈ Fq, S
n−1
r = {α ∈ Fn

q | ∥α∥ = r}, where ∥α∥ = α2
1 + · · ·+

α2
n. The set Sn−1

0 is referred to as the zero sphere.

Definition 3.1. Let Φ be the function on Fd
q × Fd

q , defined in (1.1) (for I =

I0, J = J0). For t ∈ Fq and E ⊂ Fd
q , we define νE(t) as the number of pair

(x, y) ∈ E × E such that Φ(x, y) = t.

Remark 3.2. It is clear that t ∈ Φ(E,E) if and only if νE(t) > 0. In addition,
notice that 0 ∈ Φ(E,E). Hence, in order to prove that the quotient distance
set Φ(E,E) is exactly Fq, it is enough to prove that for each fixed t ∈ F∗

q , we
have νE(t) > 0. In other words, the quotient distance problem is reduced to
finding a minimal size condition on any set E ⊂ Fd

q such that νE(t) > 0 for all
t ̸= 0. This procedure is referred to as the counting function argument.

For t ∈ F∗
q , let Rt = {x ∈ Fd

q : Φ(x,0) = t}. By the definition of νE , we can
write

νE(t) =
∑

x,y∈E:Φ(x,y)=t

1 =
∑

x,y∈Fd
q

E(x)E(y)Rt(x− y).

Applying the Fourier inversion theorem to Rt(x− y), we easily obtain

(3.1) νE(t) = q2d
∑
m∈Fd

q

R̂t(m)|Ê(m)|2.

Let us measure the size of E such that

νE(t) = q2d
∑
m∈Fd

q

R̂t(m)|Ê(m)|2 > 0.

First, we compute the Fourier transform R̂t(m). For m ∈ Fd
q , we write

m′ = (m1, . . . ,mℓ) ∈ Fℓ
q and m′′ = (mℓ+1, . . . ,md) ∈ Fk

q .
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Lemma 3.3. For t ∈ F∗
q , the Fourier transform R̂t can be written

R̂t(m) = q−1δ0(m) + q−d−1Gd
1η

k(−t)
∑
s̸=0

ηd(s)χ1

(
t||m′|| − ||m′′||

−4st

)
− Ŝℓ−1

0 (m′)Ŝk−1
0 (m′′),

where δ0 denotes the indicator function I{0}.

Proof. By the definition of Rt, we have

R̂t(m) = q−d
∑

x∈Fd
q :Φ(x,0)=t

χ1(−m · x).

Since t ̸= 0, by the definition of Φ, we can write

R̂t(m) = q−d
∑

x∈Fd
q :||x′′||,||x′||≠0,Φ(x,0)=t

χ1(−m · x)

= q−d
∑

x∈Fd
q :||x′||−t||x′′||=0

χ1(−m · x)− q−d
∑

x∈Fd
q :||x′′||=||x′||=0

χ1(−m · x).

By the definitions of the Fourier transform and the zero sphere, the second
term above can be written

q−d
∑

x∈Fd
q :||x′′||=||x′||=0

χ1(−m · x) = Ŝℓ−1
0 (m′)Ŝk−1

0 (m′′).

By the orthogonality of the additive character χ1, we have

q−d
∑

x∈Fd
q :||x′||−t||x′′||=0

χ1(−m · x)(3.2)

= q−d
∑
x∈Fd

q

q−1
∑
s∈Fq

χ1(s(||x′|| − t||x′′||))χ1(−m · x).

Computing the cases of s = 0 and s ̸= 0 separately, the right-hand side of (3.2)
is reduced to

q−1δ0(m) + q−d−1
∑
s̸=0

∑
x∈Fd

q

χ1(s||x′|| −m′ · x′)χ1(−st||x′′|| −m′′ · x′′).

By the formula (3) in Lemma 2.6, this is equal to

q−1δ0(m) + q−d−1Gd
1η

k(−t)
∑
s ̸=0

ηd(s)χ1

(
t||m′|| − ||m′′||

−4st

)
.

Therefore, the lemma follows. □
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We can simplify Ω :=
∑
s̸=0

ηd(s)χ1

(
t||m′|| − ||m′′||

−4st

)
into

Ω =

{
qδ0(t||m′|| − ||m′′||)− 1 if d is even,

η(−t(t||m′|| − ||m′′||))G1 if d is odd.
(3.3)

Now combining the value Ω with Lemma 3.3, we get the following consequence.

Corollary 3.4. With the assumption of Lemma 3.3, the following statements
hold.

(1) If d is even, then R̂t(m) is equal to

q−1δ0(m) + q−dGd
1η

k(−t)δ0(t||m′|| − ||m′′||)− q−d−1Gd
1η

k(−t)

− Ŝℓ−1
0 (m′)Ŝk−1

0 (m′′).

(2) If d is odd, then R̂t(m) is equal to

q−1δ0(m) + q−d−1Gd+1
1 ηk(−t)η (−t(t||m′|| − ||m′′||))

− Ŝℓ−1
0 (m′)Ŝk−1

0 (m′′).

Using Corollary 3.4, νE(t) can be expressed more explicitly. Recall |I| = ℓ
and |J | = k, and for m = (m1,m2, . . . ,md), m

′ = (m1,m2, . . . ,mℓ), and
m′′ = (mℓ+1,mℓ+2, . . . ,md).

Lemma 3.5. For t ∈ F∗
q and E ⊂ Fd

q with d = ℓ + k, νE(t) can be expressed
as follows:

(1) If d is even, then

νE(t) =
|E|2

q
+ qdGd

1η
k(−t)

∑
m∈Fd

q

δ0(t||m′|| − ||m′′||)|Ê(m)|2

− q−1Gd
1η

k(−t)|E| − q2d
∑
m∈Fd

q

Ŝℓ−1
0 (m′)Ŝk−1

0 (m′′)|Ê(m)|2.

(2) If d is odd, then

νE(t) =
|E|2

q
+ qd−1Gd+1

1 ηk(−t)
∑
m∈Fd

q

η (−t(t||m′|| − ||m′′||)) |Ê(m)|2

− q2d
∑
m∈Fd

q

Ŝℓ−1
0 (m′)Ŝk−1

0 (m′′)|Ê(m)|2.

Proof. Inserting the value R̂t(m) in Corollary 3.4 into the formula (3.1), the
lemma follows immediately from the equalities (2.4) and (2.5). □
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3.2. Key lemmas on Fourier transforms on zero spheres

We compute explicitly the Fourier transform on the zero sphere Sn−1
0 in Fn

q ,
which was already used in the literature, e.g., [1] and [11].

Lemma 3.6. For α ∈ Fn
q , n ≥ 2, the following statements hold.

(1) If n is odd, then we have

Ŝn−1
0 (α) =


q−1 if α = 0,
0 if α ̸= 0, ||α|| = 0,
q−n−1Gn+1

1 η(−||α||) if ||α|| ≠ 0.

(2) If n is even, then we have

Ŝn−1
0 (α) =

 q−1 + q−n−1Gn
1 (q − 1) if α = 0,

q−n−1Gn
1 (q − 1) if α ̸= 0, ||α|| = 0,

−q−n−1Gn
1 if ||α|| ≠ 0.

Proof. By the orthogonality of χ1, we see that

Ŝn−1
0 (α) = q−n

∑
u∈Fn

q :∥u∥=0

χ1(−α · u)

= q−n−1
∑
u∈Fn

q

∑
s∈Fq

χ1 (s∥u∥)χ1(−α · u)

=
δ0(α)

q
+ q−n−1

∑
s∈F∗

q

∑
u∈Fn

q

χ1 (s∥u∥ − α · u) .

By (3) in Lemma 2.6, we have

(3.4) Ŝn−1
0 (α) =

δ0(α)

q
+ q−n−1Gn

1

∑
s∈F∗

q

ηn(s)χ1

(
||α||
−4s

)
.

We now claim that (3.4) is reduced to

Ŝn−1
0 (α) =

{
q−1δ0(α) + q−n−1Gn

1 (qδ0(||α||)− 1) if n is even,

q−1δ0(α) + q−n−1Gn+1
1 η(−||α||) if n is odd.

(3.5)

Indeed, in (3.5) the case when d is even follows from the orthogonality of χ1.
If n is odd, then ηn = η, from which the odd case is immediate. Now, using
the definition of δ0 and η (recall that η(0) = 0), we can easily get the formulas
in Lemma 3.6. □

Since the absolute value of the Gauss sum is
√
q (2.3), the following corollary

is a direct consequence of Lemma 3.6.

Corollary 3.7. For n ≥ 1, a bound on the Fourier transform Ŝn−1
0 can be

obtained as follows:
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(1) If n is odd, then

Ŝn−1
0 (0) = q−1 and |Ŝn−1

0 (m)| ≤ q−
n+1
2 if m ̸= 0.

(2) If n is even, then

|Ŝn−1
0 (m)| ≤

{
2q−1 if m = 0,
q−

n
2 if m ̸= 0.

Lemma 3.6 together with the formula (2.3) provides more concrete value of
the Fourier transform on zero spheres in some specific cases.

Lemma 3.8. Assume η(−1) = −1 and n ≥ 2. Then the Fourier transform

Ŝn−1
0 can be explicitly given as follows:

(1) If n ≡ 2 (mod 4), then we have

Ŝn−1
0 (α) =

 q−1 − q−
n
2 + q−

n
2 −1 if α = 0,

−q−n
2 + q−

n
2 −1 if α ̸= 0, ||α|| = 0,

q−
n
2 −1 if ||α|| ≠ 0.

(2) If n ≡ 0 (mod 4), then we have

Ŝn−1
0 (α) =

 q−1 + q−
n
2 − q−

n
2 −1 if α = 0,

q−
n
2 − q−

n
2 −1 if α ̸= 0, ||α|| = 0,

−q−n
2 −1 if ||α|| ≠ 0.

Proof. By Lemma 3.6(2), it is enough to show that

(3.6) Gn
1 =

{
−q n

2 if n ≡ 2 (mod 4),
q

n
2 if n ≡ 0 (mod 4).

From the assumption that η(−1) = −1, using the formula (2.3), we have

G2
1 = η(−1)q = −q.

Indeed, if n ≡ 2 (mod 4), then n/2 is odd and hence

(3.7) Gn
1 = [(G1)

2]n/2 = (η(−1)q)n/2 = −qn/2.

Therefore, the case n ≡ 2 (mod 4) follows from (3.7). The case n ≡ 0 (mod 4)
is immediate from the equality Gn

1 = qn/2. □

To use a simple notation in the proof of the main theorem, we need the
following.

Definition 3.9. For ℓ, k with ℓ+ k = d, and E ⊂ Fd
q , we define

AE(ℓ, k) = q2d
∑
m∈Fd

q

|Ŝℓ−1
0 (m′)||Ŝk−1

0 (m′′)||Ê(m)|2.

It is clear that 0 ≤ AE(ℓ, k). As we shall see, a lower bound of −AE(ℓ, k)
(or an upper bound of AE(ℓ, k)) plays a crucial role in proving Theorem 1.4.
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Lemma 3.10. Assume ℓ ≥ k ≥ 1 with ℓ + k ≥ 3. Then an upper bound on
AE(ℓ, k) is given as follows:

(1) If ℓ, k are odd, then

AE(ℓ, k) ≤ q−2|E|2 + qd−1− k+1
2 |E|+ qd−1− ℓ+1

2 |E|+ qd−
ℓ+1
2 − k+1

2 |E|.

(2) If ℓ is even and k is odd, then

AE(ℓ, k) ≤ 2q−2|E|2 + 2qd−1− k+1
2 |E|+ qd−1− ℓ

2 |E|+ qd−
ℓ
2+

k+1
2 |E|.

Proof. To estimate an upper bound of AE(ℓ, k), we decompose the sum over
m ∈ Fd

q as the four subsummands:∑
m∈Fd

q

=
∑

m′=0=m′′

+
∑

m′=0,m′′ ̸=0

+
∑

m′ ̸=0,m′′=0

+
∑

m′,m′′ ̸=0

.

Then AE(t) is the same as

q2d

 ∑
m′=0=m′′

+
∑

m′=0,m′′ ̸=0

+
∑

m′ ̸=0,m′′=0

+
∑

m′,m′′ ̸=0

 |Ŝℓ−1
0 (m′)||Ŝk−1

0 (m′′)||Ê(m)|2.

Now we prove (1). Since ℓ, k are odd, we can use Corollary 3.7(1) to estimate

|Ŝℓ−1
0 (m′)||Ŝk−1

0 (m′′)|. Then by a direct algebra, we have

AE(ℓ, k)

≤ q2dq−2|Ê(0,0)|2 + q2d
∑

m′′ ̸=0

q−1q−
k+1
2 |Ê(0,m′′)|2

+ q2d
∑
m′ ̸=0

q−
ℓ+1
2 q−1|Ê(m′,0)|2 + q2d

∑
m′,m′′ ̸=0

q−
ℓ+1
2 q−

k+1
2 |Ê(m′,m′′)|2.

From the fact that each of the above sums
∑

· |Ê(·)|2 is dominated by∑
m∈Fd

q
|Ê(m)|2 = q−d|E|, and Ê(0,0) = q−d|E|, the proof follows. Next

we prove (2), whose proof is similar to that of the first case. Since ℓ is even and

k is odd, we apply Corollary 3.7(2) and Corollary 3.7(1) to estimate |Ŝℓ−1
0 (m′)|

and |Ŝk−1
0 (m′′)|, respectively. Then it is not hard to check that

AE(ℓ, k) ≤ 2q−2|E|2 + 2qd−1− k+1
2 |E|+ qd−1− ℓ

2 |E|+ qd−
ℓ
2+

k+1
2 |E|.

This completes the proof. □

We also use the following definition for a short notation.

Definition 3.11. For E ⊂ Fd
q , we define

ÃE(ℓ, k) = q2d
∑
m∈Fd

q

Ŝℓ−1
0 (m′)Ŝk−1

0 (m′′)|Ê(m)|2.
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Notice that the Fourier transform on the zero sphere is a real valued function.

So ÃE(ℓ, k) is a real number. To prove (3) of Theorem 1.4, we will need a more

accurate estimate on the value ÃE(ℓ, k). More precisely, we need the following.

Lemma 3.12. Assume ℓ is odd, k is even, and (η(−1))
k
2 = −1. Then we have

ÃE(ℓ, k) ≤
|E|2

q2
+ qd−2− k

2 |E|+ qd−1− ℓ+1
2 |E|+ qd−

ℓ+1
2 − k

2 |E|+ qd−1− ℓ+1
2 − k

2 |E|.

Proof. From the estimate (3.5), we can write

Ŝℓ−1
0 (m′)Ŝk−1

0 (m′′) =
(
q−1δ0(m

′) + q−ℓ−1Gℓ+1
1 η(−||m′||)

)
×
(
q−1δ0(m

′′) + q−k−1Gk
1 (qδ0(||m′′||)− 1)

)
.

After expanding this, we plug it into

ÃE(ℓ, k) = q2d
∑
m∈Fd

q

Ŝℓ−1
0 (m′)Ŝk−1

0 (m′′)|Ê(m)|2.

Then, by a direct computation, we see that ÃE(ℓ, k) can be written as

q2d−2
∑
m∈Fd

q

δ0(m
′)δ0(m

′′)|Ê(m)|2 + q2d−1−kGk
1

∑
m∈Fd

q

δ0(m
′)δ0(||m

′′
||)|Ê(m)|2

−q2d−2−kGk
1

∑
m∈Fd

q

δ0(m
′)|Ê(m)|2 + q2d−2−ℓGℓ+1

1

∑
m∈Fd

q

η(−||m
′
||)δ0(m

′′
)|Ê(m)|2

+ q2d−1−ℓ−kGℓ+1
1 Gk

1

∑
m∈Fd

q

η(−||m
′
||)δ0(m

′′
)|Ê(m)|2

− q2d−2−ℓ−kGℓ+1
1 Gk

1

∑
m∈Fd

q

η(−||m
′
||)|Ê(m)|2 =: I1 + I2 + I3 + I4 + I5 + I6.

Recall from (2.5) that |Ê(0,0)| = q−d|E|. From this, we obtain I1 = |E|2
q2 . To

estimate I2, notice that k ≡ 2 (mod 4), which follows from our assumptions

that k is even and (η(−1))
k
2 = −1. Hence, by (3.6), we have Gk

1 = −q k
2 < 0.

This implies that I2 is a non-positive integer so that we can remove I2 when

we estimate an upper bound of ÃE(ℓ, k).
Since δ0(m

′) ≤ 1 for all m ∈ Fd
q , we have

(3.8) I3 ≤ q2d−2−k|G1|k
∑
m∈Fd

q

|Ê(m)|2 = q2d−2−kq
k
2 q−d|E|.

The equality in (3.8) follows from the facts that

|G1| =
√
q and

∑
m∈Fd

q

|Ê(m)|2 = q−d|E|.
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To estimate the terms I4, I5, I6, we use the same argument as that for the
term I3. Then one can easily show that

I4 ≤ qd−1− ℓ+1
2 |E|, I5 ≤ qd−

ℓ+1
2 − k

2 |E|, I6 ≤ qd−1− ℓ+1
2 − k

2 |E|.

Hence, the theorem follows by putting all estimates together. □

We also need the following estimates, for which we heavily use the explicit
value of the Fourier transform on the zero sphere in Lemma 3.8.

Lemma 3.13. Suppose that η(−1) = −1, ℓ ≡ 0 (mod 4), and k ≡ 2 (mod 4).
Then we have

ÃE(ℓ, k) ≤
2|E|2

q2
+ 2qd−2− k

2 |E|+ qd−1− ℓ
2 |E|+ 2q

d−2
2 |E|.

Proof. We want to find a larger real number than

ÃE(ℓ, k) = q2d
∑
m∈Fd

q

Ŝℓ−1
0 (m′)Ŝk−1

0 (m′′)|Ê(m)|2.

Therefore, we may ignore some negative terms that will appear in computing

an upper bound of ÃE(ℓ, k). Hence, we break down the above sum
∑

m∈Fd
q
into

9 subsummands: ∑
m′,m′′=0

+
∑

m′=0,||m′′||=0,m′′ ̸=0

+
∑

m′=0,||m′′||≠0

+
∑

||m′||=0,m′ ̸=0,m′′=0

+
∑

||m′||=0,m′ ̸=0,
||m′′||=0,m′′ ̸=0

+
∑

||m′||=0,m′ ̸=0,
||m′′||≠0

+
∑

||m′||≠0,m′′=0

+
∑

||m′||̸=0,
||m′′||=0,m′′ ̸=0

+
∑

||m′||≠0,||m′′||≠0

=: J1 + J2 + J3 + J4 + J5 + J6 + J7 + J8 + J9,

and then we only consider such sums that Ŝℓ−1
0 (m′)Ŝk−1

0 (m′′) takes a positive
value, which can be easily evaluated by Lemma 3.8. More precisely, Lemma
3.8 with our assumptions on ℓ, k, implies that

Ŝℓ−1
0 (m′) =


q−1 + q−

ℓ
2 − q−

ℓ
2−1 if m′ = 0,

q−
ℓ
2 − q−

ℓ
2−1 if m′ ̸= 0, ||m′|| = 0,

−q− ℓ
2−1 if ||m′|| ≠ 0,

and

Ŝk−1
0 (m′′) =


q−1 − q−

k
2 + q−

k
2−1 if m′′ = 0,

−q− k
2 + q−

k
2−1 if m′′ ̸= 0, ||m′′|| = 0,

q−
k
2−1 if ||m′′|| ≠ 0.
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Notice that J2, J5, J7, J9 ≤ 0. Hence we have

ÃE(ℓ, k) ≤ J1 + J3 + J4 + J6 + J8.

J1 is bounded above by 2q−2|E|2 since

J1 ≤ q2d(q−1 + q−
ℓ
2 )q−1|Ê(0,0)|2 ≤ 2q2dq−2(q−d|E|)2.

J3 is bounded above by 2qd−2− k
2 , because

J3 ≤ q2d
∑
m∈Fd

q

2q−1q−
k
2−1|Ê(m)|2 = 2q2dq−1q−

k
2−1q−d|E|.

Similarly, a direct computation shows that

J4 ≤ qd−1− ℓ
2 |E|.

J6 is bounded above by q
d
2−1|E| since

J6 ≤ q2d
∑
m∈Fd

q

q−
ℓ
2 q−

k
2−1|Ê(m)|2 = q2dq−

ℓ
2 q−

k
2−1q−d|E| = q

d
2−1|E|.

Similarly, we can show that J8 is bounded above by q
d
2−1|E|. Putting together

all estimates above, the lemma follows. □

We set

Γ(E) := q
3d
2

∑
m∈Fd

q :||m
′||=0

||m′′||=0

|Ê(m)|2.

The following estimate is one of the key ingredients in the proof of our main
result.

Lemma 3.14. Suppose that η(−1) = −1, ℓ ≡ 2 (mod 4), and k ≡ 2 (mod 4).
Then for E ⊂ Fd

q , with d = ℓ+ k, we have

ÃE(ℓ, k)− Γ(E) ≤ |E|2

q2
+ qd−2− k

2 |E|+ qd−2− ℓ
2 |E|+ q

d−4
2 |E|.

Proof. The proof will proceed by the same argument as in Lemma 3.13. Let
Jj , 1 ≤ j ≤ 9, be the term defined in the proof of Lemma 3.13. Namely,

ÃE(ℓ, k) = q2d
∑
m∈Fd

q

Ŝℓ−1
0 (m′)Ŝk−1

0 (m′′)|Ê(m)|2 =

9∑
i=1

Ji.

Unlike in the proof of Lemma 3.13, here we only invoke Lemma 3.8(1) with
ℓ, k both odd. Then we see that

Ŝℓ−1
0 (m′) =


q−1 − q−

ℓ
2 + q−

ℓ
2−1 if m′ = 0,

−q− ℓ
2 + q−

ℓ
2−1 if m′ ̸= 0, ||m′|| = 0,

q−
ℓ
2−1 if ||m′|| ≠ 0,
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and

Ŝk−1
0 (m′′) =


q−1 − q−

k
2 + q−

k
2−1 if m′′ = 0,

−q− k
2 + q−

k
2−1 if m′′ ̸= 0, ||m′′|| = 0,

q−
k
2−1 if ||m′′|| ≠ 0.

Notice that J2, J4, J6, J8 ≤ 0. Hence we have

ÃE(ℓ, k) ≤ J1 + J3 + J5 + J7 + J9.

Equivalently we can write

ÃE(ℓ, k)− Γ(E) ≤ J1 + J3 + (J5 − Γ(E)) + J7 + J9.

Since d = ℓ+ k, it is not hard to check that J5 − Γ(E) ≤ 0. Indeed, we have

J5 = q2d
∑

m′ ̸=0,||m′||=0
m′′ ̸=0,||m′′||=0

(
−q− ℓ

2 + q−
ℓ
2−1

)(
−q− k

2 + q−
k
2−1

)
|Ê(m)|2

≤ q2d
∑

m′ ̸=0,||m′||=0
m′′ ̸=0,||m′′||=0

q−
ℓ
2 q−

k
2 |Ê(m)|2 ≤ Γ(E).

Thus we get

ÃE(ℓ, k)− Γ(E) ≤ J1 + J3 + J7 + J9.

As in the proof of Lemma 3.13, a direct computation shows that

J1 ≤ q2dq−1q−1|Ê(0,0)|2 = q−2|E|2,

J3 ≤ q2d
∑
m∈Fd

q

q−1q−
k
2−1|Ê(m)|2 = qd−2− k

2 |E|,

J7 ≤ q2d
∑
m∈Fd

q

q−
ℓ
2−1q−1|Ê(m)|2 = qd−2− ℓ

2 |E|,

and

J9 ≤ q2d
∑
m∈Fd

q

q−
ℓ
2−1q−

k
2−1|Ê(m)|2 = qd−2− ℓ+k

2 |E| = q
d
2−2|E|.

Putting together all the estimates above gives the desired result. □

4. Proof of the main result

In this section, we give a proof of Theorem 1.4. Propositions 4.1 and 4.3
together will prove the special case, i.e., I = I0, J = J0 and ℓ ≥ k, of Theorem
1.4. Recall that d = ℓ+ k ≥ 3 and ℓ, k ≥ 1. A proof of the general case will be
given in the last part.

Proposition 4.1. Assume ℓ ≥ k. Then a lower bound on Index(Φ) is given
as follows:

(1) If k is odd, then Index(Φ) ≥ d− k+1
2 .
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(2) If k is even and (η(−1))
k
2 = 1, then Index(Φ) ≥ d− k

2 .

(3) If k is even and (η(−1))
k
2 = −1, then Index(Φ) ≥ d− k+2

2 .

To give the proof of Proposition 4.1, we invoke the following result.

Lemma 4.2 (Lemma 2.1, [20]). If H is a subspace of maximal dimension
contained in the zero sphere Sn−1

0 , then we have the following facts:

(1) If n is odd, then |H| = q
n−1
2 .

(2) If n is even, (η(−1))
n
2 = 1 then |H| = q

n
2 .

(3) If n is even, (η(−1))
n
2 = −1 then |H| = q

n−2
2 .

4.1. Proof of Proposition 4.1

Let H be a maximal subspace lying in the zero sphere Sk−1
0 in Fk

q . Set

E = Fℓ
q ×H. Then it is clear that

(4.1) E ⊂ Fd
q , |E| = qℓ × |H|.

By Lemma 4.2, we have

(4.2) |E| =


qℓ+

k−1
2 if k is odd,

qℓ+
k
2 if k is even and (η(−1))

k
2 = 1,

qℓ+
k−2
2 if k is even and (η(−1))

k
2 = −1.

Now we show that
Φ(E,E) = {0}.

To prove this, by the definition of Φ, it is enough to prove that

(4.3) ∆(H) := {||α− β|| : α, β ∈ H} = {0}.
Once this is proved, the formula (4.2) implies Proposition 4.1. Let us justify

(4.3). Since H is a subspace contained in the zero sphere Sk−1
0 , we see that for

α, β ∈ H ⊂ Sk−1
0 , we have α − β is also contained in the zero sphere. Hence,

||α−β|| = 0. This proves Proposition 4.1. Now we give an upper bound of the
index of Φ.

Proposition 4.3. Assume ℓ ≥ k. Then an upper bound on Index(Φ) is given
as follows:

(1) If k is odd, then Index(Φ) ≤ d− k+1
2 .

(2) If k is even and (η(−1))
k
2 = 1, then Index(Φ) ≤ d− k

2 .

(3) If k is even and (η(−1))
k
2 = −1, then Index(Φ) ≤ d− k+2

2 .

4.2. Proof of (1) in Proposition 4.3

Assume k is an odd integer. By the definition of the index of Φ, it is enough
to prove that there is sufficiently large C > 0 such that for each t ∈ F∗

q ,

νE(t) > 0 whenever E is a subset Fd
q with |E| ≥ Cqd−

k+1
2 . Since the value of

νE(t) depends on the dimension, we consider two cases separately.
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Case 1: d is even. In this case, ℓ is odd since k is odd. Fix t ̸= 0. Then it
follows from Lemma 3.5(1) that

νE(t) =
|E|2

q
+ qdGd

1η
k(−t)

∑
m∈Fd

q

δ0(t||m′|| − ||m′′||)|Ê(m)|2

− q−1Gd
1η

k(−t)|E| − q2d
∑
m∈Fd

q

Ŝℓ−1
0 (m′)Ŝk−1

0 (m′′)|Ê(m)|2.

We will show that if |E| ≥ Cqd−
k+1
2 , then a lower bound of νE(t) is positive.

By the trivial estimate for a lower bound, it follows that

νE(t) ≥
|E|2

q
− qd|G1|d

∑
m∈Fd

q

|Ê(m)|2

− q−1|G1|d|E| − q2d
∑
m∈Fd

q

|Ŝℓ−1
0 (m′)||Ŝk−1

0 (m′′)||Ê(m)|2.

Since |G1|d = qd/2 and
∑

m∈Fd
q
|Ê(m)|2 = q−d|E|, we obtain

νE(t) ≥
|E|2

q
− qd/2|E| − qd/2−1|E| −AE(ℓ, k).

Since ℓ, k are odd, it follows from Lemma 3.10(1) that

0 ≤ AE(ℓ, k) ≤ q−2|E|2 + qd−1− k+1
2 |E|+ qd−1− ℓ+1

2 |E|+ qd−
ℓ+1
2 − k+1

2 |E|.
Combining this estimate with the above lower bound of νE(t), we get

νE(t) ≥
|E|2

q
− qd/2|E| − qd/2−1|E|

− q−2|E|2 − qd−1− k+1
2 |E| − qd−1− ℓ+1

2 |E| − qd−
ℓ+1
2 − k+1

2 |E|.

We note that the first term |E|2
q of RHS of the above inequality dominates all

other terms of it and hence νE(t) > 0, provided that

|E| ≫ max
{
q

d+2
2 , qd−

k+1
2 , qd−

ℓ+1
2 , qd+1− ℓ+1

2 − k+1
2

}
.

Since ℓ ≥ k, the maximum value is the same as qd−
k+1
2 . Hence, if |E| ≫ qd−

k+1
2 ,

then νE(t) > 0, as required.
Case 2: d is odd.

The proof is almost identical to that of Case 1. In this case, ℓ is even. To
find a lower bound of νE(t), we use Lemma 3.5(2). As in Case 1, we have

(4.4) νE(t) ≥
|E|2

q
− q

d−1
2 |E| −AE(ℓ, k).

Since ℓ is even and k is odd, it follows from Lemma 3.10(2) that

AE(ℓ, k) ≤ 2q−2|E|2 + 2qd−1− k+1
2 |E|+ qd−1− ℓ

2 |E|+ qd−
ℓ
2+

k+1
2 |E|.
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From this estimate and (4.4), we see that

νE(t) ≥
|E|2

q
− q

d−1
2 |E|

− 2q−2|E|2 − 2qd−1− k+1
2 |E| − qd−1− ℓ

2 |E| − qd−
ℓ
2−

k+1
2 |E|.

Since ℓ ≥ k, the first term |E|2
q dominates all other terms in RHS of the above

inequality, provided that |E| ≥ Cqd−
k+1
2 . Namely, if |E| ≥ Cqd−

k+1
2 , then

νE(t) > 0. This completes the proof of Case 2.

4.3. Proof of (2) in Proposition 4.3

This proof proceeds as in the proof of (1) in Proposition 4.3. Inserting the

value R̂t(m) of Lemma 3.3 into the formula (3.1), we obtain

νE(t) =
|E|2

q
+ qd−1Gd

1η
k(−t)

∑
m∈Fd

q

∑
s∈F∗

q

ηd(s)χ1

(
t||m′|| − ||m′′||

−4st

)
|Ê(m)|2

− q2d
∑
m∈Fd

q

Ŝℓ−1
0 (m′)Ŝk−1

0 (m′′)|Ê(m)|2.

It is obvious that

νE(t) ≥
|E|2

q
− qd−1|G1|d

∑
m∈Fd

q

(q − 1)|Ê(m)|2

− q2d
∑
m∈Fd

q

|Ŝℓ−1
0 (m′)||Ŝk−1

0 (m′′)||Ê(m)|2.

By the Gauss sum estimate (2.3) and the fact that
∑

m∈Fd
q
|Ê(m)|2 = q−d|E|,

(4.5) νE(t) ≥
|E|2

q
− q

d
2 |E| −AE(ℓ, k).

Decompose AE(ℓ, k) as

q2d

 ∑
m′=0=m′′

+
∑

m′=0,m′′ ̸=0

+
∑

m′ ̸=0,m′′=0

+
∑

m′,m′′ ̸=0

 |Ŝℓ−1
0 (m′)||Ŝk−1

0 (m′′)||Ê(m)|2.

Notice that Corollary 3.7 implies that for any dimension n,

|Ŝn−1
0 (0)| ≤ 2q−1 and |Ŝn−1

0 (0)| ≤ q
n
2 for all m ̸= 0.

We use these facts to estimate |Ŝℓ−1
0 (m′)||Ŝk−1

0 (m′′)|. Then we can obtain

AE(ℓ, k) ≤ 4q−2|E|2 + 2qd−1− k
2 |E|+ 2qd−1− ℓ

2 |E|+ qd−
ℓ
2−

k
2 |E|.
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Combining this estimate and (4.5) gives

νE(t) ≥
|E|2

q
− q

d
2 |E|

− 4q−2|E|2 − 2qd−1− k
2 |E| − 2qd−1− ℓ

2 |E| − qd−
ℓ
2−

k
2 |E|.

Since ℓ ≥ k, a direct computation shows that if |E| ≥ Cqd−
k
2 , then νE(t) > 0.

This finishes the proof.

4.4. Proof of (3) in Proposition 4.3

We recall that our assumption of (3) is equivalent to the condition that k ≡ 2
(mod 4) and η(−1) = −1. To prove this, we treat separately two cases: d is
even, and d is odd.
Case 1: d is odd. In this case, ℓ is odd, because k is even. By Lemma 3.5(2),
we have

νE(t) =
|E|2

q
+ qd−1Gd+1

1 ηk(−t)
∑
m∈Fd

q

η (−t(t||m′|| − ||m′′||)) |Ê(m)|2

− q2d
∑
m∈Fd

q

Ŝℓ−1
0 (m′)Ŝk−1

0 (m′′)|Ê(m)|2.

By the trivial estimate, this implies that

νE(t) ≥
|E|2

q
− qd−1|G1|d+1

∑
m∈Fd

q

|Ê(m)|2 − ÃE(ℓ, k).

Using the formulas (2.3), (2.4), and Lemma 3.12, we obtain

νE(t) ≥
|E|2

q
− q

d−1
2 |E|

− |E|2

q2
− qd−2− k

2 |E| − qd−1− ℓ+1
2 |E| − qd−

ℓ+1
2 − k

2 |E| − qd−1− ℓ+1
2 − k

2 |E|.

By a direct comparison, since ℓ ≥ k, the first term |E|2
q dominates the other

terms of the RHS of the above inequality, provided that |E| ≥ Cqd−1− k
2 . Thus,

if |E| ≥ Cqd−1− k
2 , then νE(t) > 0, which completes the proof.

Case 2: d is even.
In this case, ℓ is even. By the assumption, we have k ≡ 2 (mod 4). Then

by Lemma 3.5(1) we have

νE(t) =
|E|2

q
+ qdGd

1

∑
m∈Fd

q

δ0(t||m′|| − ||m′′||)|Ê(m)|2(4.6)

− q−1Gd
1 |E| − ÃE(ℓ, k).
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We will separately deal with two cases:

ℓ ≡ 0 (mod 4) and ℓ ≡ 2 (mod 4).

Case 2-(1) Assume that ℓ ≡ 0 (mod 4).
Since k ≡ 2 (mod 4), we see that d ≡ 2 (mod 4). Thus, by the formula

(3.6), we have

νE(t) =
|E|2

q
− q

3d
2

∑
m∈Fd

q

δ0(t||m′|| − ||m′′||)|Ê(m)|2

+ q
d−2
2 |E| − ÃE(ℓ, k).

Applying a trivial bound and the Plancherel theorem to the above summation,
we have

0 ≤
∑
m∈Fd

q

δ0(t||m′|| − ||m′′||)|Ê(m)|2

≤
∑
m∈Fd

q

|Ê(m)|2 = q−d|E|.

Hence, we get

νE(t) ≥
|E|2

q
− q

d
2 |E|+ q

d−2
2 |E| − ÃE(ℓ, k).

Using a lower bound of −ÃE(ℓ, k) in Lemma 3.13, we have

νE(t) ≥
|E|2

q
− q

d
2 |E|+ q

d−2
2 |E|

− 2|E|2

q2
− 2qd−2− k

2 |E| − qd−1− ℓ
2 |E| − 2q

d−2
2 |E|.

By a direct computation, we notice that the first value |E|2
q of the RHS domi-

nates all other terms, so νE(t) > 0, provided that

|E| ≥ Cmax
{
q

d+2
2 , qd−1− k

2 , qd−
ℓ
2

}
.

It remains to show that the maximum value takes the value qd−1− k
2 . But this

is obvious since d ≥ k + 4 and ℓ ≥ k + 2 by the assumption. This proves
Case 2-(1).
Case 2-(2) Assume that ℓ ≡ 2 (mod 4).

In this case, d ≡ 0 (mod 4) and so Gd
1 = q

d
2 . Hence, (4.6) becomes

νE(t) =
|E|2

q
+ q

3d
2

∑
m∈Fd

q

δ0(t||m′|| − ||m′′||)|Ê(m)|2

− q
d−2
2 |E| − ÃE(ℓ, k).



820 D. CHEONG AND J. KIM

Since the second term above is greater than or equal to

Γ(E) = q
3d
2

∑
m∈Fd

q :||m′||=0=||m′′||

|Ê(m)|2,

we have

νE(t) ≥
|E|2

q
− q

d−2
2 |E| − (ÃE(ℓ, k)− Γ(E)).

Using Lemma 3.14, we obtain

νE(t) ≥
|E|2

q
− q

d−2
2 |E| − |E|2

q2
− qd−2− k

2 |E| − qd−2− ℓ
2 |E| − q

d−4
2 |E|.

Since ℓ ≥ k, one can check that if |E| ≥ Cqd−1− k
2 , then νE(t) > 0. This proves

Case 2-(2).

4.5. Completion of the proof of Theorem 1.4

We complete the proof of the main theorem.
Case (i): k = min{ℓ, k}, and I = I0, J = J0.

This case is immediate from Propositions 4.1 and 4.3.

Case (ii): ℓ = min{ℓ, k}, and I = I0, J = J0. For this case, consider the
automorphism of the set Fd

q defined by

Π(x) = Π(x′, x′′) := (x′′, x′).

Let Ẽ denote the image of E under Π. Then for each t ∈ F∗
q , we see that

νẼ(t) = νE(
1
t ). Thus νE(t) and νẼ(t) have the same bound, since the bound

was taken independently of t. Thus, if we apply Case (i) to νẼ(t), Case (ii)
follows.
Case (iii): General I, J .
For this case, define Λ : Fd

q → Fd
q by

Λ(x1, . . . , xd) := (xi1 , . . . , xiℓ , xj1 , . . . , xjk).

We may think that the domain (resp. the target) space Fd
q is a “metric space”

equipped with the “metric” Φ(I, J) (resp. Φ(I0, J0)). Now note that Λ is a
bijection and Λ preserves the distance. Thus, the domain and target spaces are
identified with each other as metric spaces. Therefore, by the definition of the
index, the indices of Φ(I, J) and Φ(I0, J0) are equal. This completes the proof
Theorem 1.4.
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[3] X. Du, L. Guth, Y. Ou, H. Wang, B. Wilson, and R. Zhang, Weighted restriction

estimates and application to Falconer distance set problem, Amer. J. Math. 143 (2021),

no. 1, 175–211. https://doi.org/10.1353/ajm.2021.0005
[4] X. Du, A. Iosevich, Y. Ou, H. Wang, and R. Zhang, An improved result for Falconer’s

distance set problem in even dimensions, Math. Ann. 380 (2021), no. 3-4, 1215–1231.
https://doi.org/10.1007/s00208-021-02170-1

[5] X. Du and R. Zhang, Sharp L2 estimates of the Schrödinger maximal function in higher

dimensions, Ann. of Math. (2) 189 (2019), no. 3, 837–861. https://doi.org/10.4007/
annals.2019.189.3.4

[6] K. J. Falconer, On the Hausdorff dimensions of distance sets, Mathematika 32 (1985),

no. 2, 206–212 (1986). https://doi.org/10.1112/S0025579300010998
[7] A. Greenleaf, A. Iosevich, and K. Taylor, Configuration sets with nonempty interior,

J. Geom. Anal. 31 (2021), no. 7, 6662–6680. https://doi.org/10.1007/s12220-019-

00288-y

[8] A. Greenleaf, A. Iosevich, and K. Taylor, On k-point configuration sets with nonempty

interior, Mathematika 68 (2022), no. 1, 163–190. https://doi.org/10.1112/mtk.12114

[9] L. Guth, A. Iosevich, Y. Ou, and H. Wang, On Falconer’s distance set problem in the
plane, Invent. Math. 219 (2020), no. 3, 779–830. https://doi.org/10.1007/s00222-

019-00917-x

[10] D. N. Hart, A. Iosevich, D. Koh, and M. Rudnev, Averages over hyperplanes, sum-

product theory in vector spaces over finite fields and the Erdős-Falconer distance con-
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