Acknowledgement
The first author is partly supported by the ANR: project No. ANR-16-CE40-0010-01 (GeRepMod) and ANR-18-CE40-0024-02 (CATORE). The second author is partly supported by the ANR: project No. ANR-20-CE40-0026-01 (SMAGP).
References
- W. P. Barth and A. Sarti, Polyhedral groups and pencils of K3-surfaces with maximal Picard number, Asian J. Math. 7 (2003), no. 4, 519-538. https://doi.org/10.4310/AJM.2003.v7.n4.a5
- S. Boissiere and A. Sarti, Counting lines on surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), no. 1, 39-52. https://doi.org/10.2422/2036-2145.2007.1.03
- C. Bonnafe, Magma codes for "Some singular curves and surfaces arising from invariants of complex reflection groups", preprint, 2018. https://hal.science/hal-01897587
- C. Bonnafe, Some singular curves and surfaces arising from invariants of complex reflection groups, Exp. Math. 30 (2021), no. 3, 429-440. https://doi.org/10.1080/10586458.2018.1555778
- C. Bonnafe and A. Sarti, Complex reflection groups and K3 surfaces I, Epijournal Geom. Algebrique 5 (2021), Art. 3, 26 pp. https://doi.org/10.46298/epiga.2021.volume5.6573
- C. Bonnafe and A. Sarti, K3 surfaces with maximal finite automorphism groups containing M20, Ann. Inst. Fourier (Grenoble) 71 (2021), no. 2, 711-730. https://doi.org/10.5802/aif.3411
- C. Bonnafe and A. Sarti, Complex reflection groups and K3 surfaces III. The group G28 = W(F4), in preparation.
- W. Bosma, J. J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. https://doi.org/10.1006/jsco.1996.0125
- N. Bourbaki, Groupes et algebres de Lie, Chapitres 4, 5, 6, Actualites Scientifiques et Industrielles 1337, Hermann, Paris, 1968.
- A. I. Degtyarev, 800 conics on a smooth quartic surface, J. Pure Appl. Algebra 226 (2022), no. 10, Paper No. 107077, 5 pp. https://doi.org/10.1016/j.jpaa.2022.107077
- A.-S. Elsenhans and J. Jahnel, The Picard group of a K3 surface and its reduction modulo p, Algebra Number Theory 5 (2011), no. 8, 1027-1040. https://doi.org/10.2140/ant.2011.5.1027
- D. Festi and D. C. Veniani, Counting elliptic fibrations on K3 surfaces, preprint, 2021.
- H. Inose, On certain Kummer surfaces which can be realized as non-singular quartic surfaces in ℙ3, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), no. 3, 545-560.
- G. Lusztig, Some examples of square integrable representations of semisimple p-adic groups, Trans. Amer. Math. Soc. 277 (1983), no. 2, 623-653. https://doi.org/10.2307/1999228
- I. Marin and J. C. M. Michel, Automorphisms of complex reflection groups, Represent. Theory 14 (2010), 747-788. https://doi.org/10.1090/S1088-4165-2010-00380-5
- J. C. M. Michel, The development version of the CHEVIE package of GAP3, J. Algebra 435 (2015), 308-336. https://doi.org/10.1016/j.jalgebra.2015.03.031
- S. Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math. 94 (1988), no. 1, 183-221. https://doi.org/10.1007/BF01394352
- B. Naskrecki, Explicit equations of 800 conics on a Barth-Bauer quartic, arxiv: 2108.13402.
- N. O. Nygaard and A. Ogus, Tate's conjecture for K3 surfaces of finite height, Ann. of Math. (2) 122 (1985), no. 3, 461-507. https://doi.org/10.2307/1971327
- A. Sarti, Pencils of symmetric surfaces in ℙ3, J. Algebra 246 (2001), no. 1, 429-452. https://doi.org/10.1006/jabr.2001.8953
- A. Sarti, Transcendental lattices of some K3-surfaces, Math. Nachr. 281 (2008), no. 7, 1031-1046. https://doi.org/10.1002/mana.200510657
- M. Schutt, Elliptic fibrations of some extremal K3 surfaces, Rocky Mountain J. Math. 37 (2007), no. 2, 609-652. https://doi.org/10.1216/rmjm/1181068770
- M. Schutt and T. Shioda, Mordell-Weil lattices, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 70, Springer, Singapore, 2019. https://doi.org/10.1007/978-981-32-9301-4
- G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274-304. https://doi.org/10.4153/cjm-1954-028-3
- I. Shimada, On elliptic K3 surfaces, Michigan Math. J. 47 (2000), no. 3, 423-446. https://doi.org/10.1307/mmj/1030132587
- H. Sterk, Finiteness results for algebraic K3 surfaces, Math. Z. 189 (1985), no. 4, 507-513. https://doi.org/10.1007/BF01168156
- U. Thiel, Champ: a Cherednik algebra Magma package, LMS J. Comput. Math. 18 (2015), no. 1, 266-307. https://doi.org/10.1112/S1461157015000054
- R. M. van Luijk, Quartic K3 surfaces without nontrivial automorphisms, Math. Res. Lett. 13 (2006), no. 2-3, 423-439. https://doi.org/10.4310/MRL.2006.v13.n3.a7
- R. M. van Luijk, K3 surfaces with Picard number one and infinitely many rational points, Algebra Number Theory 1 (2007), no. 1, 1-15. https://doi.org/10.2140/ant.2007.1.1
- G. Xiao, Galois covers between K3 surfaces, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 73-88. https://doi.org/10.5802/aif.1507