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COMPLEX REFLECTION GROUPS AND K3 SURFACES II.
THE GROUPS G29, G30 AND G31

Cédric Bonnafé and Alessandra Sarti

Abstract. We study some K3 surfaces obtained as minimal resolutions
of quotients of subgroups of special reflection groups. Some of these were
already studied in a previous paper by W. Barth and the second author.
We give here an easy proof that these are K3 surfaces, give equations in
weighted projective space and describe their geometry.

1. Introduction

In the first paper of this series [5], the authors have explained how to build
K3 surfaces from invariants of complex reflection groups of rank 4 generated by
reflections of order 2. In this second part and the upcoming third part [7], we
complete this qualitative result by investigating more precisely the examples
given by the primitive groups (see [5, §2] for the definition), i.e., the groups G28,
G29, G30 and G31 (as in [5], we follow Shephard-Todd numbering for complex
reflection groups [24]). In particular, we investigate the following questions:

(a) We show that all the K3 surfaces constructed this way have big Picard
number.

(b) We compute some of the transcendental lattices of those K3 surfaces
with Picard number 20.

(c) We give some explicit equations in weighted projective space.
(d) We construct explicit elliptic fibrations for all the examples of K3 sur-

faces we obtain: as shown in [26, Corollary 2.7] there is only a finite
number of elliptic fibrations for a K3 surface (up to automorphisms)
but, even though we sometimes construct several non-equivalent ellip-
tic fibrations, there is no case in which we pretend to have constructed
all of them. For some of them, we determine the singular fibers. When
one knows the transcendental lattice one could use the recent paper by
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Festi and Veniani [12] to compute the number of elliptic fibrations (up
to automorphisms of the surface).

In this second paper, we focus on the groups G29, G30 and G31 while the
third paper [7] will be devoted to the study of G28. See the introduction of [7]
for the reasons why G28 deserves a particular treatment, we recall here the
main points: firstly, G′

28 ̸= GSL
28; secondly, there are two possible interesting

degrees for the fundamental invariants, namely 6 and 8; thirdly, G28 admits
an interesting outer automorphism. Also, we take opportunity of this work
to revisit results from both authors who constructed highly singular surfaces
from invariants of complex reflection groups [4, 20]. Most (but not all) of
the singularities constructed this way can be obtained from [5, Corollary 2.4].
In §6.5, we also revisit Boissière-Sarti example of the smooth octic surface
containing 352 lines [2], using Springer theory [5, Theorem 3.13].

Finally, note that the first part [5] was free of computer calculations, as
the arguments were pretty general: in this second part, we study very spe-
cific examples, for which the determination of geometric features (singularities,
transcendental lattices, branch locus, etc.) requires computer calculations. We
use here the software Magma [8] (as well as some specific functions described
in [3]).

The structure of the paper is as follows. In Section 3 we recall some general
facts on the groups G29, G30 and G31. Section 4 is devoted to the group
G29. Here we consider the unique G29-invariant polynomial of degree four
which defines a quartic K3 surface in P3(C), this is denoted by XMu in [6].
We consider then the quotient of the quartic K3 surface by the derived group
G′

29 = GSL
29 . As remarked in [6] we have that PG′

29 = M20 the Mathieu group,
which acts symplectically on XMu. It is well known that the minimal resolution
is again a K3 surface and Xiao in [30] showed that the Picard number is 20.
We give in Lemma 4.1 and Corollary 4.2 an alternative proof that uses Lehrer-
Springer theory. In §4.3 we describe an elliptic fibration on this surface and
thanks to that we compute the transcendental lattice. This result is new and
summarized in the following theorem:

Theorem 1.1. Let X̃29 be the minimal resolution of XMu/G′
29. This is a

K3 surface with Picard number 20 admitting an elliptic fibration with fibers
Ẽ6 + D̃6 + 2Ã2 + Ã1 and transcendental lattice isometric to

TX̃29 =
(

6 0
0 60

)
.

Observe that this surface was already studied under a different point of
view by M. Schütt in the paper [22, Table 2] about the construction of elliptic
fibrations on extremal K3 surfaces. Note that Schütt constructs another elliptic
fibration for X̃29: it would be interesting to know if there are still other elliptic
fibrations. In Section 5 we consider the group G30 and the zero set of the one
dimensional family of invariant polynomials of degree 12. The group G30 is
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the Coxeter group of type H4. Let X̃30
λ denote the K3 surface which is the

minimal resolution of the quotient of the zero set Z(f2,λ) of the polynomials
of degree 12 by GSL

30 and let X30
λ denote this singular quotient (recall that here

G′
30 = GSL

30). In [1,21] the Picard number and the transcendental lattice of the
K3 surfaces were computed. The equation of X30

λ and the description of the
elliptic fibration is new. We show the following result:

Theorem 1.2. We have the following equation
X30

λ = {[y1 : y3 : y4 : j] ∈ P(1, 2, 3, 6) | j2 = rλ(y1, y3, y4)},

where rλ(y1, y3, y4) is a polynomial of total degree 12. For λ generic the surface
X̃30

λ has Picard number 19 and it admits an elliptic fibration with fibers D̃5 +
Ã4 + 2Ã2 + 3Ã1. The transcendental lattice as computed in [21] is

TX̃30
λ

=

4 2 0
2 34 0
0 0 −30

 .

There are at least four special values of λ for which the Picard number of the
corresponding K3 surface is 20, these four values correspond to the surfaces in
Z(f2,λ) that have isolated ADE singularities. These values of λ, the singular
fibers of an elliptic fibration and the transcendental lattices are resumed in Table
III.

Finally Section 6 is devoted to the group G31 and the one-dimensional family
of invariant polynomials of degree 20. We have again GSL

31 = G′
31, and let X31

λ

denote the singular quotient by GSL
31 and by X̃31

λ its minimal resolution. The
latter is a K3 surface and we show:

Theorem 1.3. We have the following equation
X31

λ = {[y1 : y2 : y4 : j] ∈ P(2, 1, 2, 5) | j2 = qλ(y1, y2, y4)},

where qλ(y1, y2, y4) is a polynomial of total degree 10. For λ generic the surface
X̃31

λ has Picard number 18 and it admits an elliptic fibration with singular
fibers D̃7 + 3Ã2 + 3Ã1. There are at least six special values of λ for which the
Picard number of the corresponding K3 surface is 19, and five of these values
correspond to the singular fibers in Z(f3,λ). These values of λ and the singular
fibers of an elliptic fibration are resumed in Table IV.

Finally in the Appendix we collect several useful results that allow to find
the equations of the K3 surfaces and the elliptic fibrations. We remark that in
the case of G31 we described a one parameter family of K3 surfaces, we believe
that this family is not isotrivial, but we could not prove it, for G30 this was
shown in [1].
Acknowledgements. We warmly thank A. Degtyarev and B. Naskręcki for
useful comments on XMu and X. Roulleau for explaining us how to use the
Artin-Tate conjecture to compute the Picard number in Theorem 1.3 and for
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fruitful discussions. We also thank the referee for having carefully read the first
version of this paper and for valuable suggestions. The first author is grateful
to the MSRI to let him use its high performance computing facilities.
Hypothesis and notation. We keep the notation introduced in [5]. We
recall some of them. First, V is a complex vector space and W is a complex
reflection group acting on V of dimension n. If v ∈ V \ {0}, we denote by
[v] ∈ P(V ) the line it defines (i.e., [v] = Cv). If S is a subset of V , we denote
by WS (resp. W (S)) the setwise (resp. pointwise) stabilizer of S (so that W (S)
is a normal subgroup of WS and WS/W (S) acts faithfully on S). The derived
subgroup of W will be denoted by W ′, and we set W SL = W ∩ SLC(V ). The
degrees (resp. codegrees) of W (see [5, §3.1]) are denoted by (d1, d2, . . . , dn)
and (d∗

1, d∗
2, . . . , d∗

n), respectively.
If e ∈ Z⩾1, we set

δ(e) = |{1 ⩽ k ⩽ n | e divides dk}| and δ∗(e) = |{1 ⩽ k ⩽ n | e divides d∗
k}|.

With this notation, we have
δ(e) = max

w∈W

(
dim V (w, ζe)

)
,

where V (w, ζe) denotes the ζe-eigenspace of the element w ∈ W . In particular,
ζe is an eigenvalue of some element of W if and only if δ(e) ̸= 0 that is, if and
only if e divides some degree of W . In this case, we fix an element we of W
such that

dim V (we, ζe) = δ(e).
We set for simplicity V (e) = V (we, ζe) and W (e) = WV (e)/W (V (e)): this
subquotient of W acts faithfully on V (e). We denote by A the set of reflecting
hyperplanes of W and we set

J =
∏

H∈A

αH ,

where αH is an element of V ∗ such that H = Ker(αH).
From now on, and until the end of this paper, we assume that n = dim(V ) =

4 and that W ⊂ GLC(V ) is a primitive1 complex reflection group. If S is a
K3 surface, we denote by TS its transcendental lattice and by ρ(S) its Picard
number.

If C1, . . . , Cr are curves on a surface S, the intersection graph will be rep-
resented as follows: vertices correspond to C1, . . . , Cr and are represented by
circles (with no information if the self-intersection is −2; otherwise, the self-
intersection number is written inside the circle) and there is an edge between
the vertices corresponding to Cj and Cj′ if Cj ·Cj′ ̸= 0 (nothing more is written
on the edge if Cj · Cj′ = 1; otherwise, the number Cj · Cj′ is written above the
edge).

1Recall that W is said primitive if there does not exist a decomposition V = V1 ⊕ · · · ⊕ Vr

with r ⩾ 2 and Vk ̸= 0 such that W permutes the Vk’s.
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The singular fibers of elliptic fibrations will be denoted as usual according
to their intersection matrix: for instance, a singular fiber of type D̃4 is a fiber
whose intersection matrix is the Cartan matrix of the extended Dynkin dia-
gram of type D̃4 (in Kodaira’s notation, it is of type I∗

0). There remain some
ambiguities (for types Ã1 and Ã2): we say that a singular fiber is of type Ã1
(resp. Ã2) if it is of type I2 (resp. I3) and will use Kodaira’s notation (i.e., III
or IV) for the other singular fibers whose intersection graph is of type Ã1 or
Ã2.

If S is a K3 surface and φ : S −→ P1(C) is an elliptic fibration admitting a
section σ : P1(C) −→ S, we denote by MWσ(φ) (or simply MW(φ) if σ is clear
from the context) its Mordell-Weil group. In this case, we denote by Trivσ(φ)
(or Triv(φ)) the trivial lattice of the fibration φ, namely the lattice generated
by the vertical divisors and the class of the image of σ. Then
(1.4) MWσ(φ) ≃ Pic(S)/Trivσ(φ).

See the book [23] for more details on elliptic surfaces.
We will often denote by

(
a b c

)
the 2 × 2–matrix:(

a b
b c

)
.

2. Preliminaries on primitive complex reflection groups of rank 4

Recall [24] that there are five primitive complex reflection groups of rank 4,
and that they are denoted by G28, G29, G30, G31 and G32. The first four are
generated by reflections of order 2 and G32 is generated by reflections of order
3. Note that G28 (resp. G30) is the Coxeter group of type F4 (resp. H4).

When we do explicit computations, we use the models of the primitive com-
plex reflection groups W that were implemented in Magma by the first author
(almost copying files due to Michel [16] and Thiel [27]) in a file

primitive-complex-reflection-groups.m
which can be downloaded in [3]. Most of them (but not all) are taken from [16]
or [27]. We do not pretend that these are the best models, but the interested
reader might have a look at [4, Remark 1.3] for a discussion about some of the
advantages of these models.

Representing W as a subgroup of GL4(C) allows to identify V with C4 and
we denote by (x, y, z, t) the dual basis of the canonical basis of C4. Therefore,
C[V ] = C[x, y, z, t].

A first advantage of the chosen models is that the group W is implemented
as a Galois stable subgroup of GL4(K), where K is a finite Galois extension of
Q (the fact that such a model always exists was proved by Marin-Michel [15]).
This implies that we can find fundamental invariants in Q[x, y, z, t]. For in-
stance, with such a model for W = G30 = W(H4), the singular dodecic sur-
faces constructed by the second author [20] can be realized over Q, as explained
in [4, Proposition 1.1].
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Table I. Numerical information for G29, G30 and G31

W |W | |W/Z(W )| |W ′| Deg(W )
Codeg(W )

G29 7 680 1 920 3 840 4, 8, 12, 20
0, 8, 12, 16

G30 = W(H4) 14 400 7 200 7 200 2, 12, 20, 30
0, 10, 18, 28

G31 46 080 11 520 23 040 8, 12, 20, 24
0, 12, 16, 28

Another advantage of our models is that W generally contains a big sub-
group of monomial matrices (except for W = G30 = W(H4)). This leads to
expressions of fundamental invariants in terms of symmetric functions. For
this reason, we introduce the following notation: if m is a monomial in x, y,
z, t, we denote by Σ(m) the sum of the monomials obtained by permuting the
variables. For instance,

Σ(x4y) = x4(y + z + t) + y4(x + z + t) + z4(x + y + t) + t4(x + y + z)
= Σ(xy4).

3. The groups G29, G30 and G31

Hypothesis. From now on, and until the end of this paper, we assume
moreover that W is one of the three primitive groups G29, G30 or G31.

Let us first recall in Table I some specific data for these three groups that
were contained in [5, Table I].

Note that the hypothesis implies that

W ′ = W SL

is of index 2 in W (recall from [5] the notation W SL = W ∩ SLC(V )): we
denote by σ the non-trivial element of W/W ′. According to [5, Theorem 5.4],
the surface Z (f)/W ′ is a K3 surface with ADE singularities (endowed with a
non-symplectic automorphism given by the action of σ), provided that f is a
fundamental invariant of W of degree 4 if W = G29, of degree 12 of W = G30
or of degree 20 if W = G31 such that Z (f) has only ADE singularities (which
is almost always the case2). Our aim in this paper is to study the geometry of
the K3 surface with ADE singularities Z (f)/W ′ and of its minimal resolution

2This is not true only for the one-parameter family of surfaces of degree 20 built from
G31: in this family, only one surface does not have ADE singularities (it is in fact reducible).
See Section 6 for details.
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Table II. K3 surfaces of the form ˜Z (f)/W ′ for W = G29,
G30 or G31

W d Zsing(f) m singularities of Z (f)/W ′ ρ T ˜Z (f)/W ′

G29 4 ∅ 0 D4 + 2 A4 + 3 A2 + A1 20
(
6 0 60

)

G30 12

∅ 1 A4 + 4 A2 + 5 A1 ⩾ 19 Theorem 1.2

60 A1 0 E8 + 3 A2 + 4 A1 20
(
4 2 34

)
300 A1 0 E6 + A4 + 2 A2 + 4 A1 20

(
12 6 58

)
360 A1 0 D7 + 4 A2 + 3 A1 20

(
6 0 132

)
600 A1 0 D5 + A4 + 3 A2 + 3 A1 20

(
6 0 220

)

G31 20

∅ 1 D6 + A3 + 3 A2 + 2 A1 ⩾ 18

960 A1 0 D6 + D5 + A3 + 2 A2 19

480 A1 0 E6 + D6 + A3 + A2 + A1 19

1920 A1 0 D6 + A5 + A3 + A2 + 2 A1 19

1440 A2 0 D6 + D5 + 3 A2 + A1 19

640 A3 0 D6 + 2 A3 + 2 A2 + 2 A1 19
(Here, d = deg(f), m is the number of moduli of the family and

ρ = ρ( ˜Z (f)/W ′))

˜Z (f)/W ′: in particular, we prove that the information given in Table II are
correct3.

4. The group G29

Hypothesis. We assume in this section, and only in this section, that
W = G29.

3Erratum: the singularities of the five singular surfaces of degree 20 defined by fun-
damental invariants of G31 given in Table II differ from the ones given in [4, Ta-
ble 4]: in fact, there is a mistake in [4], as can be checked with Magma thanks
to [3], and the correct values are given in Table II. See the correction statement at
https://doi.org/10.1080/10586458.2018.1555778.

https://doi.org/10.1080/10586458.2018.1555778
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We have G29 = ⟨s1, s2, s3, s4⟩, where

s1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , s2 = 1
2


1 1 i i
1 1 −i −i

−i i 1 −1
−i i −1 1

 ,

s3 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 , s4 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Here, i = ζ4 is a primitive fourth root of unity. Some of the numerical facts used
below can be extracted from [5, Table I]. For instance, note that GSL

29 = G′
29 is

of index 2 in G29, so that G29 = ⟨s1⟩⋉G′
29 (observe that s1 is an involution).

Note also that Z(G29) ≃ µ4 ⊂ G′
29, see for instance [5, (3.2)]. Moreover,

PG′
29 ≃ M20 (the Mathieu group of degree 20) so that we have a split exact

sequence
1 −→ PG′

29 ≃ M20 −→ PG29 −→ µ2 −→ 1,

where the last map is induced by the determinant.

4.1. The K3 surface

By [5, Table I], there exists a unique (up to scalar) homogeneous invariant
polynomial f1 of degree 4: it is given by

f1 = Σ(x4) − 6Σ(x2y2).

As in [6], we set XMu = Z (f1) (recall that this surface was discovered by
Mukai [17]). It can easily be checked that XMu is a smooth and irreducible
quartic in P3(C), so that it is a K3 surface, endowed with a symplectic action of
M20 and an extra non-symplectic automorphism of order 2. Several properties
of XMu are given in [6] (transcendental lattice, automorphisms, polarizations:
note that it is denoted by XMu in [6], as it was discovered by Mukai [17]). For
instance, it is known that XMu has Picard number 20.

Continuing with the topic of this paper, we describe here geometric prop-
erties of the quotient X29 = XMu/G′

29: as the quotient of a K3 surface by a
finite group acting symplectically, it is also a K3 surface with ADE singulari-
ties, whose minimal resolution X̃29 has Picard number 20 (see [6]). This can
also be proved by examining the singularities of X29, which are given below:

Lemma 4.1 (Xiao). The K3 surface X29 has singularities D4+2 A4+3 A2+A1.

Proof. See [30, Table 2, last line]. As we need concrete results (for instance,
the coordinates of the singular points), we provide a proof that will provide
these extra-information.
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Since the action of PG′
29 on XMu is symplectic, it is sufficient to compute

the stabilizers of points of XMu. For this, we follow the discussion of [5, §4.1],
from which we keep the notation. We fix v ∈ V \ {0} such that z = [v] ∈ XMu
and we may assume that Wz = Wv⟨wez ⟩. Note that 4 divides ez because w4 =
ζ4 IdV ∈ W , and that ez divides one of the degrees of W . So ez ∈ {4, 8, 12, 20}.
This leads to the following discussion, by using Magma:

• If ez = 20 then, since δ(20) = δ∗(20) = 1, we have Wv = 1 by [5,
Theorem 3.13] and det(w20) = ζ4+8+12+20−4

20 = 1. So the stabilizer of
z in W is contained in W ′: so the W -orbit of z contains two W ′-orbits,
and the stabilizer of z in PG′

29 is cyclic of order 5. This leads to 2 A4
singularities in X29, which we denote by a±

4 .
• If ez = 12, then δ(12) = 1, so the W -orbit of z is completely deter-

mined, and a computation with Magma shows that |Wz| = 24. This
shows that Wv is generated by a single reflection and so W ′

z = ⟨w12⟩ ⊊
Wz. So the W -orbit of z is a single W ′-orbit, and the stabilizer of z
in PG′

29 is cyclic of order 3. This leads to an A2 singularity in X29,
which we denote by a2.

• If ez = 8, then δ(8) = 1, so the W -orbit of z is completely determined,
and a computation with Magma shows that |Wz| = 64 ̸= 32 = |W ′

z|.
So the W -orbit of z is a single W ′-orbit, and one checks with Magma
that the stabilizer of z in PG′

29 is the quaternionic group of order 8.
This leads to a D4 singularity in X29, which we denote by d4.

• Assume now that ez = 4. If |Wv| = 1 or 2, then W ′
z = ⟨w4⟩ and so the

stabilizer of z in PG′
29 is trivial. So the image of z in X29 is smooth.

By [5, Corollary 2.4], the group Wv cannot have rank 3, for otherwise
z would be singular in XMu. So Wv has rank 2. There are three
conjugacy classes of parabolic subgroups of rank 2, and representatives
are given by

W12 = ⟨s1, s2⟩, W13 = ⟨s1, s3⟩ and W23 = ⟨s2, s3⟩.
We denote by Ljk the projective line P(V Wjk ) in P(V ). Since XMu is
smooth, it follows that Ljk meets XMu transversally [5, Corollary 2.8],
and we set Ejk = Ljk ∩ XMu. Then |Ejk| = 4 and it follows from [5,
§4.1, (c)] that two elements of Ωjk are in the same W ′-orbit if and only
if they are in the same (W ′ ∩ Njk)-orbit. Now the next results can be
obtained with Magma:

– The group W12 is of type A2 and |(W ′ ∩ N12)/W12⟨w4⟩| = 2.
Moreover, the stabilizer of any point in E12 is equal to (W ′ ∩
W12)⟨w4⟩, so its stabilizer in PW ′ is cyclic of order 3. This leads
to 2 A2 singularities in X29, which we denote by a±

2 .
– The group W13 is of type A1 × A1 and |(W ′ ∩ N13)/W13⟨w4⟩| = 4.

Moreover, the stabilizer of any point in E13 is equal to (W ′ ∩
W13)⟨w4⟩, so its stabilizer in PW ′ is cyclic of order 2. This leads
to an A1 singularities in X29, which we denote by a1.
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– The set E23 is contained in the W -orbit of z8, so this case has
already been treated and does not lead to new singularities in
X29.

The proof of the proposition is complete. □

Corollary 4.2. The Picard number of the K3 surface X̃29 is 20.

Proof. As X̃29 is algebraic, we get from Lemma 4.1 that the rank of Pic(X̃29)
is

⩾ 1 + (1 + 3 · 2 + 2 · 4 + 4) = 20.

Since this rank is bounded above by 20 for a K3 surface, this yields the result.
□

Remark 4.3. With a suitable choice of a family f of fundamental invariants and
a suitable normalization of J , one gets with Magma that

X29 = {[x2 : x3 : x4 : j] ∈ P(2, 3, 5, 10) |
j2 = − 64x5

2x2
4 + 16x4

2x4
3 + 32x3

2x3
3x4 + 1800x2

2x2
3x2

4

− 432x2x6
3 − 5000x2x3x3

4 + 432x5
3x4 + 3125x4

4}

(see [5, Proposition 3.11]). In this model, the singular points are given as
follows, as can be checked with Magma:

d4 = [1 : 0 : 0 : 0], a2 = [0 : 1 : 0 : 0], a±
4 = [0 : 0 : 1 : ±25

√
5]

a1 = [α : β : 1 : 0] and a±
2 = [α± : β± : 1 : 0],

where{
(α5, αβ, β5) = (84375/16, −25/2, 3125/54),
(α5

±, α±β±, β5
±) = ((3987 ± 1632

√
6)/16, (7 ± 2

√
6)/2, (117 ± 62

√
6)/18).

Indeed, it follows from [5, Lemma 2.2] that d4, a2 and a±
4 have coordinates of

the form [1 : 0 : 0 : j1], [0 : 1 : 0 : j2] and [0 : 0 : 1 : j±
3 ], respectively, and the

values of j1, j2 and j±
3 are determined by the equation of X29.

For the remaining points, computations with Magma show that the evalu-
ation of f4 (the invariant of degree 20) at points of E12 or E13 is different from
0, so that the points a1 and a±

2 belong to the affine chart X29
(4) of X29 defined

by x4 ̸= 0. Setting x4 = 1, the coordinates in the ambient space of X29
(4) are

a = x5
2, b = x2x3, c = x5

3 and j, and X29
(4) is equal to

X29
(4) ={(a, b, c, j)∈A4(C) | b5 = ac and

j2 = −64a + 16b4 + 32b3 + 1800b2 − 432bc − 5000b + 432c + 3125}.

From the second equation, we can express a in terms of b, c and j, and so

(4.4) X29
(4) = {(b, c, j)∈A3(C) | 64b5 = cP29(b, c, j)},
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where P29(b, c, j) = 16b4 +32b3 +1800b2 −432bc−5000b+432c+3125−j2. The
coordinates of the singular points of X29

(4) can then be computed with Magma
and fit with what is written above.

Finally, recall that the action of the non-trivial element σ of W/W ′ is given
by
(4.5) σ · [x2 : x3 : x4 : j] = [x2 : x3 : x4 : −j]
and that X29/⟨σ⟩ ≃ P(2, 3, 5).
4.2. Some smooth rational curves in X29

We work in the model given by Remark 4.3 and we denote by π : X̃29 → X29

the natural morphism from the minimal resolution X̃29 of X29. If p is a singular
point of X29, we denote by ∆p

1, . . . , ∆p
m the irreducible components of π−1(p)

(these are smooth rational curves and m is equal to the Milnor number of X29

at p). We define
C2 = {[x2 : x3 : x4 : j] ∈ X29 | x2 = 0}

and
C3 = {[x2 : x3 : x4 : j] ∈ X29 | x3 = 0}.

Let C̃2 and C̃3 denote the respective strict transforms of C2 and C3 in X̃29.
Proposition 4.6. The curves C2 and C3 are smooth rational curves.
Proof. First,

C3 = {[x2 : x4 : j] ∈ P(2, 5, 10) | j2 = −64x5
2x2

4 + 3125x4
4}.

But the map P(2, 5, 10) → P2(C), [x2 : x4 : j] 7→ [x5
2 : x2

4 : j] is an isomorphism
of varieties. Through this isomorphism, we get

C3 = {[x2 : x4 : j] ∈ P2(C) | j2 = −64x2x4 + 3125x2
4}.

Hence, C3 is a non-degenerate conic in P2(C), i.e., C3 is a smooth rational
curve.

For C2, note that
C2 = {[x3 : x4 : j] ∈ P(3, 5, 10) | j2 = 432x5

3x4 + 3125x4
4}.

But P(3, 5, 10) ≃ P(3, 1, 2) and, through this isomorphism, one gets
C2 = {[x3 : x4 : j] ∈ P(3, 1, 2) | j2 = 432x3x4 + 3125x4

4}.

For k ∈ {3, 4}, we denote by C
(k)
2 the affine chart of C2 defined by xk ̸= 0.

Then C2 = C
(3)
2 ∪C

(4)
2 and we only need to show that C

(3)
2 and C

(4)
2 are smooth

rational affine curves. For C
(4)
2 , this is obvious. For C

(3)
2 , working with the

coordinates a = x3
4, b = x4j and c = j3, one gets

C
(3)
2 = {(a, b, c) ∈ A3(C) | b3 = ac, c = 432b + 3125ab and b2 = 432a + 3125a2}

≃ {(a, b) ∈ A2(C) | b2 = 432a + 3125a2}.

This is clearly smooth and the result follows. □
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Proposition 4.6 implies that C̃2 and C̃3 are smooth rational curves in X̃29.
Adding the 19 smooth rational curves of the form ∆p

m, this gives us 21 smooth
rational curves in X̃29, we investigate in the next subsection if these curves are
independent in the Picard group or not.

4.3. An elliptic fibration

Any K3 surface with Picard number 20 admits an elliptic fibration. We
construct here an explicit one, and determine its singular fibers.

First, let φ : X29 \ {a+
4 , a−

4 } → P1(C), [x2 : x3 : x4 : j] 7→ [x3
2 : x2

3]. This
map is indeed well-defined on X29 \ {a+

4 , a−
4 } and induces a map

φ̃ : X̃29 \ (π−1(a+
4 ) ∪ π−1(a−

4 )) −→ P1(C).

Our elliptic fibration is obtained by extending φ̃:

Proposition 4.7. The map φ̃ : X̃29 \ (π−1(a+
4 ) ∪ π−1(a−

4 )) −→ P1(C) extends
to a morphism of algebraic varieties X̃29 −→ P1(C).

Proof. Let π̂ : X̂29 −→ X29 denote the minimal resolution of X29 only at
the points a+

4 and a−
4 . In particular, X̂29 is still singular (it has singularities

A1 + 3 A2 + D4). Let φ̂ = φ ◦ π̂ : X̂29 \ (π̂−1(a+
4 ) ∪ π̂−1(a−

4 )) −→ P1(C). Since
the resolution π : X̃29 → X29 factors through X̂29, it is sufficient to show that
φ̂ extends to X̂29.

We will now use the results (and the notation) of Appendix A with (k, l) =
(2, 3). Let a4 = [0 : 0 : 1] ∈ P(2, 3, 5): it is the image of a+

4 (or a−
4 ) through

the quotient morphism X29 −→ P(2, 3, 5). Now, the map φ : X29 \{a+
4 , a−

4 } →
P1(C) is the composition of the quotient X29 \{a+

4 , a−
4 } −→ P(2, 3, 5)\{a4} and

the map φ2,3 : P(2, 3, 5) \ {a4} −→ P1(C) defined in Appendix A. Therefore, φ̂
is the composition

X̂29 \ (π̂−1(a+
4 ) ∪ π̂−1(a−

4 )) // P̂(2, 3, 5) \ {a4}
φ̂2,3 // P1(C),

where the first map is the quotient by the lift of σ. So the result follows from
the fact that φ̂2,3 extends to P̂(2, 3, 5) (see (A.1)). □

Remark 4.8. Let us describe two sections of the elliptic fibration φ̃. For this,
keep the notation X̂29, φ̂ of the proof of Proposition 4.7. The map φ̂ factors
through

X̂29 // P̂(2, 3, 5)
φ̂2,3 // P1(C),

the first map being the quotient by the action of σ. We denote by ∆1, . . . , ∆4

the smooth rational curves defined in Appendix A and by ∆̂a±
4

1 , . . . , ∆̂a±
4

4 the
smooth rational curves which are the components of the exceptional divisor of
X̂29 above a±

4 . Since X29 −→ P(2, 3, 5) is unramified above [0 : 0 : 1], we can
number those last curves so that ∆̂a±

4
j → ∆j is an isomorphism.
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Now, by Remark A.4, the map φ̂2,3 admits a section θ : P1(C) −→ P̂(2, 3, 5)
whose image is ∆2. This yields two sections θ̂± : P1(C) → X̂29, whose image
is ∆a±

4
2 . Now, X̃29 is obtained from X̂29 by successive blow-ups of points not

lying in ∆a+
4

2 ∪ ∆a−
4

2 , so θ̂± lifts to a section θ̃± : P1(C) −→ X̃29, note that
θ̃− = σ ◦ θ̃+.

Let [u : v] ∈ P1(C). We denote by X29
u,v the Zariski closure of φ−1([u : v])

(endowed with its reduced structure) in X29 and by X̃29
u,v its strict transform

in X̃29. Note that X̃29
u,v ⊂ φ̃−1([u : v]) and that

X29
u,v =

(
{[x2 : x3 : x4 : j] ∈ X | vx3

2 = ux2
3}

)
red

= φ−1([u : v]) ∪ {a+
4 , a−

4 },

where Yred denotes the reduced subscheme of Y (this is necessary only if uv =
0).

Corollary 4.9. The elliptic fibration φ̃ has singular fibers Ẽ6 +D̃6 +2 Ã2 +Ã1.

Proof. Since the map φ̃ factorizes through the quotient X̃29/⟨σ⟩, it follows from
Proposition A.3 that the intersection graph of the family of smooth rational
curves (C̃2, C̃3, ∆a+

4
1 , ∆a+

4
2 , ∆a+

4
3 , ∆a+

4
4 , ∆a−

4
1 , ∆a−

4
2 , ∆a−

4
3 , ∆a−

4
4 ) is given by

(4.10) iC̃3�
�

@
@

i∆a+
4

1

i∆a−
4

1

i∆a+
4

2

i∆a−
4

2

i∆a+
4

3

i∆a−
4

3

i∆a+
4

4

i∆a−
4

4

@
@

�
�

iC̃2

Moreover, Proposition A.3 also shows that ∆a+
4

1 and ∆a−
4

1 (resp. ∆a+
4

3 , ∆a+
4

4 , ∆a−
4

3

and ∆a−
4

4 ) are the only rational curves among the ∆a±
4

k ’s which are contained
in φ̃−1([1 : 0]) (resp. φ̃−1([0 : 1])).

This shows that φ̃−1([1 : 0]) and φ̃−1([0 : 1]) are singular fibers. Let us
determine their type. Note that

C3 = X29
1,0 and C2 = X29

0,1.

As the only singular points of X̃29 belonging to C3 (resp. C2) are a+
4 , a−

4 and
d4 (resp. a+

4 , a−
4 and a2), this shows that

φ̃−1([1 : 0]) = C̃3 ∪ ∆a+
4

1 ∪ ∆a−
4

1 ∪
( 4⋃

k=1
∆d4

k

)
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and

φ̃−1([0 : 1]) = C̃2 ∪
( 4⋃

k=3
(∆a+

4
k ∪ ∆a+

4
k )

)
∪

( 2⋃
k=1

∆a2
k

)
.

But ∆a±
4

k · ∆d4
l = ∆a±

4
k · ∆a2

m = 0, so the Kodaira-Néron classification of singular
fibers forces that, with a suitable numbering of the ∆d4

k ’s and the ∆a2
k ’s, the

intersection graphs inside φ̃−1([1 : 0]) and φ̃−1([0 : 1]) are, respectively, given
by

(4.11) i∆d4
3 i∆d4

4

i

∆d4
2

i
∆d4

1

iC̃3�
�

@
@

i∆a+
4

1

i∆a−
4

1

and

i∆a+
4

3

i∆a−
4

3

i∆a+
4

4

i∆a−
4

4

@
@

�
�

iC̃2 i∆a2
1 i∆a2

2

In other words, they are of type D̃6 and Ẽ6, respectively.
Let us now study the fibers of φ̃ at [α3 : β2] and [α3

± : β2
±], where α, β, α±

and β± are defined in Remark 4.3. This amounts to understand the fibers of
φ passing through a1, a+

2 and a−
2 . Let us first determine their irreducible com-

ponents (we treat only the cases of a1 and a+
2 , as the case of a−

2 is isomorphic
to the case of a+

2 ). Note that

β2

α3 = β5

(αβ)3 = 4
135 and

β2
+

α3
+

=
β5

+
(α+β+)3 = −36 + 16

√
6

45 .

Working inside the affine chart X29
(4), a Magma computation shows that a1

(resp. a+
2 ) is an A1-singularity of X29

135,4 (resp. X29
45,−36+16

√
6). In particular, the

projective tangent cone of X29
135,4 (resp. X29

45,−36+16
√

6) at a1 (resp. a+
2 ) consists

in two points, so X̂29
135,4 (resp. X̂29

45,−36+16
√

6) meets ∆a1
1 (resp. ∆a+

2
1 ∪ ∆a+

2
2 ) in

two points. Moreover, again by using Magma computations, we can check that
X̃29

135,4 and X̃29
45,−36+16

√
6 are irreducible of genus 0. This shows that φ̃−1([135 :

4]) = X̃29
135,4 ∪∆a1

1 (resp. φ̃−1([45 : −36+16
√

6]) = X̃29
45,−36+16

√
6 ∪∆a+

2
1 ∪∆a+

2
2 )

is a singular fiber of type Ã1 (resp. Ã2).
So we have found that the elliptic fibration φ̃ has at least 5 singular fibers

of respective types Ã1, Ã2, Ã2, D̃6 and Ẽ6. Since the sum of the Euler char-
acteristics of these singular fibers is equal to 24, the elliptic fibration φ̃ has no
more singular fiber. □

4.4. Transcendental lattice

We aim to prove that Pic(X̃29) is generated by the classes of the 21 smooth
rational curves described in the previous subsection. The intersection numbers
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between these 21 smooth rational curves have been determined in the proof
of Corollary 4.9 (see (4.10) and (4.11)). They are gathered in the following
proposition.

Proposition 4.12. The intersection graph of the above 21 smooth rational
curves is given by

i∆a+
2

1 i∆a+
2

2 i∆a−
2

1 i∆a−
2

2 i∆a1
1

i∆d4
3 i∆d4

4

i

∆d4
2

i
∆d4

1

iC̃3�
�

@
@

i∆a+
4

1

i∆a−
4

1

i∆a+
4

2

i∆a−
4

2

i∆a+
4

3

i∆a−
4

3

i∆a+
4

4

i∆a−
4

4

@
@

�
�

iC̃2 i∆a2
1 i∆a2

2

We can then compute the lattices Pic(X̃29) and TX̃29 .

Theorem 4.13. The Picard group Pic(X̃29) admits

([∆a+
2

1 ], [∆a+
2

2 ], [∆a−
2

1 ], [∆a−
2

2 ], [∆a1
1 ], [∆d4

1 ], [∆d4
2 ], [∆d4

3 ], [∆d4
4 ], [C̃3],

[∆a+
4

1 ], [∆a+
4

2 ], [∆a+
4

3 ], [∆a+
4

4 ], [∆a−
4

1 ], [∆a−
4

2 ], [∆a−
4

3 ], [∆a−
4

4 ], [C̃2], [∆a2
1 ])

as a Z-basis. The transcendental lattice of X̃29 is given by

TX̃29 =
(

6 0
0 60

)
.

Proof. Let us denote by (D1, D2, . . . , D20) the elements written in the state-
ment of the theorem, in the same order. Let I◦ = (Dj · Dk)1 ⩽ j,k ⩽ 20.
Then det(I◦) = −360. This shows that the family (Dk)1 ⩽ k ⩽ 20 is Z-free
and, as ρ(X̃29) = 20 by Corollary 4.2, this shows that (Dk)1 ⩽ k ⩽ 20 is a
Q-basis of Pic(X̃29) ⊗ Q. We denote by Λ the sublattice of Pic(X̃29) gener-
ated by (Dk)1 ⩽ k ⩽ 20. Its dual lattice Λ∨ in Pic(X̃29) ⊗Q satisfies |Λ∨/Λ| =
| det(I◦)| = 360 and Λ ⊂ Pic(X̃29) ⊂ Λ∨.

Let m denote the order of Pic(X̃29)/Λ. We must show that m = 1. Assume
that there exists a prime number p dividing m. Then m2 divides |Λ∨/Λ|, so
p ∈ {2, 3}.

Assume first that 2 divides m. Then Pic(X̃29)/Λ contains an element of
order 2 and a computation with Magma shows that this implies that Pic(X̃29)
contains one of the elements

1
2D5 = 1

2[∆a1
1 ], 1

2(D6 + D7) = 1
2([∆d4

1 ] + [∆d4
2 ]) or 1

2(D5 + D6 + D7).

But any element D in this list satisfies D · D ̸∈ 2Z: this contradicts the fact
that Pic(X̃29) is an even lattice. So m is not divisible by 2.
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Assume finally that 3 divides m. Then Pic(X̃29)/Λ contains an element of
order 3 and a computation with Magma shows that this implies that Pic(X̃29)
contains one of the elements

La,b = a

3 (D1 − D2) + b

3(D3 − D4)

= a

3 ([∆a+
2

1 ] − [∆a+
2

2 ]) + b

3([∆a−
2

1 ] − [∆a−
2

2 ])

for some a, b ∈ {0, 1, 2} and (a, b) ̸= (0, 0). But La,b · La,b = 2/3(a2 + b2) ̸∈
Z, so we also get a contradiction. This shows that m is not divisible by 3.
Consequently, m = 1, as expected.

Let us now turn to the computation of the transcendental lattice of X̃29.
First, as there is a finite rational map XMu 99K X̃29, the transcendental lattice
of X̃29 is proportional (by some rational number) to the one of XMu by [13,
Proposition 1.1]. But the transcendental lattice of XMu is given by

TXMu =
(

4 0
0 40

)
(see for instance [6, Proposition 4.4(1)]). As the discriminant of TX̃29 is equal
to the discriminant of Pic(X̃29), this shows that disc(TX̃29) = 360, and so the
only possibility is

TX̃29 =
(

6 0
0 60

)
,

as expected (we here also use that the signature of the transcendental lattice
is (2, 0)). □

Remark 4.14. Note that one can write

[∆a2
2 ] = [∆d4

1 ] + [∆d4
2 ] + 2[∆d4

3 ] + 2[∆d4
4 ] + 2[C̃3] + [∆a+

4
1 ] + [∆a−

4
1 ]

− [∆a+
4

3 ] − [∆a−
4

3 ] − 2[∆a+
4

3 ] − 2[∆a−
4

3 ] − 3[C̃2] − 2[∆a2
1 ].

We conclude this section by determining the Mordell-Weil group of φ̃, with
respect to the section θ̃+:

Proposition 4.15. MWθ̃+(φ̃) = Z[∆a−
4

2 ] ≃ Z.

Proof. First, it follows from [25, Nr. 2493] that the torsion group of MWθ̃+(φ̃) is
trivial. By the description of the singular fibers of the fibration φ̃ given in Corol-
lary 4.9, the rank of the group Trivθ̃+(φ̃) is equal to 19. Hence MWθ̃+(φ̃) ≃ Z.
To determine the generators, one just needs to notice that Pic(X̃29) is gener-
ated by all the classes given in Theorem 4.13 while Trivθ̃+(φ̃) is generated by
all these classes except [∆a−

4
2 ] (see Remark 4.14) and we fix ∆a+

4
2 as the zero

section of the fibration. □
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4.5. Complements: conics in XMu

As explained in [6, Proposition 4.3], the K3 surface XMu is the Kummer
surface of the abelian surface Ei

√
10 ×Ei

√
10, where Eα denotes the elliptic curve

C/(Z ⊕ Zα). Therefore, there exists a Nikulin configuration in XMu (i.e., 16
two by two disjoint smooth rational curves). Since [6] appeared, it has been
shown by Degtyarev [10, Theorem 1.1 and Introduction] that XMu contains 800
irreducible conics (note that 320 conics were already found in [6, Remark 4.4]
but this set of conics contains no Nikulin configuration). Later, Naskręcki
found explicit equations for the 800 conics, and showed that one can extract
from this set a Nikulin configuration, [18]. Let us describe them here. For this,
let

C0 = {[x : y : z : t] ∈ P3(C) | z + i 1+
√

5
2 t = x2 + 2

√
2xy + y2 + 3 1+

√
5

2 t2 = 0},

C1 = {[x : y : z : t] ∈ P3(C) | x + y + z = y2 + yz + z2 + 3+
√

10
2 t2 = 0}

and

C2 = {[x : y : z : t] ∈ P3(C) | x + y + z = y2 + yz + z2 + 3−
√

10
2 t2 = 0}.

Then C0, C1 and C2 are conics contained in XMu and belonging to different
G29-orbits. Moreover, the G29-orbit of C0 (resp. C1, resp. C2) has cardinality
480 (resp. 160, resp. 160).

5. The group G30 = W(H4)

Hypothesis. We assume in this section, and only in this section, that
W = G30 = W(H4).

Recall that G30 is the Coxeter group W(H4) of type H4. In other words, we
have G30 = ⟨s1, s2, s3, s4⟩ in its natural representation of dimension 4 associated
with the Coxeter graph of type H4, i.e., given by

is1 5 is2 is3 is4

(see [9, Chapter IV] for the definition of a Coxeter graph and [9, Chapter V, §5]
for the definition of its associated representation). Explicit matrices may be
found in [3]. We refer to [5, Table I] for the numerical information used here.
First, recall that G′

30 = GSL
30 and that G30/G′

30 ≃ µ2. As the group is a Coxeter
group, there exists a real vector subspace VR of V such that V = C⊗R VR and
which is stabilized by G30. This also implies that G30 admits an invariant
f1 of degree 2, which is the scalar extension of a positive definite quadratic
form on VR. We fix a fundamental invariant f2 of degree 12. If λ ∈ C, we set
f2,λ = f2 + λf6

1 : this describes (up to scalar) all the fundamental invariants of
degree 12. We set

X30
λ = Z (f2,λ)/G′

30.
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We proved in [5, Theorem 5.4] that X30
λ is a K3 surface with ADE singularities

(retrieving a result of Barth and the second author [1]). Let πλ : X̃30
λ → X30

λ

denote its minimal resolution: it is a smooth K3 surface. As this example was
already studied in [1], we will not compute again the singularities of X30

λ as
well as the transcendental lattices given in Table II. We will just give some
complementary information coming from the general theory of complex reflec-
tion group (equations, base locus, ramification) as well as a description of an
elliptic fibration together with its singular fibers in most cases.

5.1. Singular dodecics

If 1 ⩽ k ⩽ 4, we denote by Wk the subgroup of G30 generated by
{s1, s2, s3, s4} \ {sk}.

Then
W1 ≃ S4, W2 ≃ ⟨s1⟩ × S3,

W3 ≃ W(I2(5)) × ⟨s4⟩ and W4 ≃ W(H3).
Here, I2(5) (resp. H3) denotes the complete subgraph of H4 whose vertices
are s1 and s2 (resp. s1, s2 and s3) and W (I2(5)) = ⟨s1, s2⟩ (resp. W (H3) =
⟨s1, s2, s3⟩) is its associated Coxeter group. Note that W(I2(5)) is the dihedral
group of order 10. Each maximal parabolic subgroup is conjugate to one of the
Wk’s, and only to one of them because they are two by two non-isomorphic.
Let vk ∈ VR \ {0} be such that V Wk = [vk]. We denote by Ωk the W -orbit of
[vk] in P(V ). Since − IdV ∈ W by [5, Table I] and NG30(Wk)/Wk acts faithfully
on V Wk

R = Rvk (which is of dimension 1), it follows that
NG30(Wk) = Wk × ⟨− IdV ⟩.

Since NW (Wk) = W[vk] by [5, Remark 2.5], we get

(5.1) |Ωk| =


300 if k = 1,
600 if k = 2,
360 if k = 3,

60 if k = 4.

Now, f1(vk) ̸= 0 because f1 is positive definite and vk ∈ VR, and we can define
λk = −f2(vk)/f1(vk)6. Therefore, [5, Corollary 2.4] shows that
(5.2) The singular locus of the surface Z (f2,λk

) contains Ωk.
An explicit computation shows that λk ̸= λl if k ̸= l. So this example explains
by general theory and simple counting arguments the construction of the four
singular dodecics constructed by the second author [20]. It also explains why
the singular points are real. However, it does not explain why there is no more
singular point, why they are all nodes, or why there is no more value of λ such
that Z (f2,λ) is singular. All these later facts were explained in [20].

As a consequence of the above discussion, we get:
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Lemma 5.3. If v ∈ V \ {0} is such that [v] is a singular point of Z (f2,λ)
for some λ ∈ C, then Wv is a maximal parabolic subgroup of W (in particular,
Wv ̸= 1).

5.2. Equations

It follows from [5, Proposition 3.11] that
X30

λ = {[x1 : x3 : x4 : j] ∈ P(2, 20, 30, 60) | j2 = Pf (x1, −λx6
1, x3, x4)}.

Recall that the polynomial Pf is defined as follows: J2 ∈ C[V ]W and so there
is a unique polynomial in four variables Pf such that J2 = Pf (f1, f2, f3, f4).
Finally P(2, 20, 30, 60) = P(1, 10, 15, 30) = P(1, 2, 3, 6). Through this sequence
of isomorphisms, there exists a polynomial rλ in variables y1, y3, y4 which
is homogeneous of degree 12 if we assign to y1, y3, y4 the weights 1, 2, 3
respectively, and such that Pf (x1, −λx6

1, x3, x4) = rλ(x5
1, x3, x4). Therefore,

(5.4) X30
λ = {[y1 : y3 : y4 : j] ∈ P(1, 2, 3, 6) | j2 = rλ(y1, y3, y4)}.

We denote by σ the unique non-trivial element of G30/G′
30 ≃ µ2: through the

model of X30
λ given by (5.4), the action of σ is described by

σ([y1 : y3 : y4 : j]) = [y1 : y3 : y4 : −j].
Note moreover that
(5.5) Z (f2,λ)/G30 = X30

λ /µ2 ≃ P(2, 20, 30) ≃ P(1, 2, 3)
(see [5, Proposition 3.3]). The branch locus Rλ of the quotient morphism
ξλ : X30

λ −→ P(1, 2, 3) is the zero set of rλ.

5.3. Base locus

Let B denote the base locus of the family of dodecic surfaces (Z (f2,λ))λ∈C,
that is, the subvariety of P(V ) which is contained in all the members of this
family. Namely,

B = {p ∈ P(V ) | f1(p) = f2(p) = 0}.

Note that δ(10) = δ∗(10) = 2, so that dim V (10) = 2. We denote by L10
the line P(V (10)) in P(V ). The next result was already obtained by Barth
and the second author [1], but we give a proof that makes it an application of
Lehrer-Springer theory.

Proposition 5.6. The stabilizer W (10) of L10 in W is equal to CW (w10) and
has order 600. Moreover,

B =
⋃

x∈W

x(L10)

consists of 24 lines, which split into two G′
30-orbits of cardinality 12.

Proof. This is mainly a consequence of [5, Theorem 3.13]. Indeed, the fact that

B =
⋃

x∈W

x(L10)
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follows from [5, Theorem 3.13(d)]. Moreover, by [5, Theorem 3.13(f)], we have
that W (10) = CW (w10) is a reflection group for its action on V (10), and admits
(20, 30) as list of degrees. So |W (10)| = 20 · 30 = 600 by [5, (3.1)].

The only fact that is not covered by [5, Theorem 3.13] is that the 24 lines
forming B split into two G′

30-orbits of cardinality 12: but this follows from the
fact that W (10) ⊂ G′

30 (which can be checked for instance with Magma). □

Let B′ denote the image of B in P(V )/W ′. Then it follows from Proposi-
tion 5.6 that B′ is the union of two irreducible components B+ and B−. We
denote by B̃+ and B̃− their respective strict transforms in X̃31

λ .
Let us examine some particular points of B. First, note that B does not

contain a singular point of Z (f2,λ) since we have seen in §5.1 that f1(v) ̸= 0
for any v ∈ V \ {0} such that [v] is a singular point of Z (f2,λ).

Now, let k ∈ {20, 30}. Examining Table I, we see that δ(k) = δ∗(k) = 1.
By Springer Theory [5, Theorem 3.13], this implies that dim V (k) = 1, that
W (V (k)) = 1 and that W (k) = ⟨wk⟩. Let zk denote the image of V (k) in
P(V ). Then the stabilizer of zk in W is W (k) and since det wk = ζ−60

k = 1 (see
[5, Theorem 3.13(f)]), this implies that the W -orbit Ωk of zk has cardinality
14400/k and splits into two W ′-orbits. We denote by a(k/10)−1 the image of zk

in Z (f2,λ)/W ≃ P(1, 2, 3): it follows from [5, Theorem 3.13(d)] that
a1 = [0 : 1 : 0] and a2 = [0 : 0 : 1].

Note that ar is an Ar singularity of P(1, 2, 3). Now, the morphism X30
λ →

P(1, 2, 3) is unramified above ar because W (20) and W (30) are contained in
W ′. So let a±

r denote the two points of X30
λ above ar: in the model given

in §5.2, we have
a±

1 = [0 : 1 : 0 : ±j1] and a±
2 = [0 : 0 : 1 : ±j2]

for some jr ∈ C×. They are both Ar singularities of X30
λ (note that this is

true for any value of λ). We choose the value of jr so that a+
r ∈ B+ (and then

a−
r ∈ B−). Recall from [1] that

(5.7) (X30
λ )sing ∩ B′ = {a+

1 , a−
1 , a+

2 , a−
2 }.

Again, this fact holds for any value of λ.

Lemma 5.8. Let x ∈ X30
λ \ {a±

1 , a±
2 }. Then x is singular if and only if ξλ(x)

is a singular point of the branch locus Rλ. In this case, the singularity x is of
the same type as the singularity ξλ(x) of the curve Rλ.

Proof. Since the only singular points of P(1, 2, 3) are a1 and a2, the result
follows from [5, Proposition 4.4]. □

5.4. Elliptic fibration

With the model of X30
λ given in §5.2, we can define a map

φλ : X30
λ \ {a+

2 , a−
2 } −→ P1(C)

[y1 : y3 : y4 : j] 7−→ [y2
1 : y3].
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Since this map factorizes through the quotient P(1, 2, 3) of X30
λ , the same ar-

gument as in the proof of Proposition 4.7 shows that:

Proposition 5.9. The map φλ ◦ πλ : X̃30
λ \

(
π−1

λ (a+
2 ) ∪ π−1

λ (a−
2 )

)
−→ P1(C)

extends to a morphism of algebraic varieties

φ̃λ : X̃30
λ −→ P1(C).

Remark 5.10. By the same argument as in Remark 4.8, the elliptic fibration
φ̃λ : X̃30

λ −→ P1(C) admits two sections θ̃±
λ : P1(C) −→ X̃30

λ which satisfy
θ̃− = σ ◦ θ̃+.

Note that the above result is independent of λ. However, we will see in the
next corollary that the singular fibers of the elliptic fibration φ̃λ depend on λ.
We will not determine the fiber in all cases, but only whenever the following
hypothesis is satisfied:

Hypothesis (Hλ). If x and y are two different singular points of X30
λ \

{a±
1 , a±

2 }, then φλ(x) ̸= φλ(y).

Note that Hypothesis (Hλ) holds for all but a finite number of values of λ.
Moreover, an explicit computation with Magma shows that it holds for λ ∈
{λ1, λ2, λ3, λ4}.

Corollary 5.11. Let λ ∈ C be such that (Hλ) holds. Then the singular fibers
of the elliptic fibration φ̃λ : X̃30

λ → P1(C) are given by Table III.

Proof. Let us first examine the fiber at [0 : 1]. For this particular fiber, the
description will not depend on λ. Note that

φ−1
λ ([0 : 1]) = B′ = B+ ∪ B−.

We now apply results from Appendix A in the case where (k, l) = (1, 2). Let
∆1 and ∆2 denote the lines in P̂(1, 2, 3) described in Appendix A and let
φ̂1,2 : P̂(1, 2, 3) → P1(C) denote the map constructed in (A.1). It follows from
Proposition A.3 that

(♣) φ̂−1
1,2([0 : 1]) = ∆2 ∪ ∆̃(1),

where ∆(1) = {[y1 : y3 : y4] ∈ P(1, 2, 3) | y1 = 0} and ∆̃(1) is the strict transform
of ∆(1) in P̂(1, 2, 3). By the argument in Remark 4.8, the two smooth rational
curves ∆a±

2
1 and ∆a±

2
2 above the point a±

2 can be numbered so that ∆a±
2

k is
mapped isomorphically to ∆k through the quotient morphism X̃30

λ → P(1, 2, 3),
moreover, the inverse image of ∆(1) in Xλ is B+ ∪ B−. So, if we denote by
∆a±

1 the smooth rational curve above the points a±
1 and by B̃ (resp. B̃±) the

strict transform of B′ (resp. B±) in X̃30
λ , then it follows from (♣) and the

construction of φ̃λ that

φ̃−1
λ ([0 : 1]) = ∆a+

1 ∪ ∆a−
1 ∪ ∆a+

2
2 ∪ ∆a−

2
2 ∪ B̃+ ∪ B̃−.
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Since B̃+∩B̃− ̸= ∅, since ∆aε
1 ∩Bη ̸= ∅ if and only if ε = η, since ∆aε

2
2 ∩Bη ̸= ∅

if and only if ε = η and since ∆aε
1 ∩ ∆aη

2
2 = ∅, the Kodaira-Néron classification

of singular fibers implies that

(♢) φ̃−1
λ ([0 : 1]) is of type D̃5.

Note that (♢) holds for any value of λ. We will now start the discussion
according to the value of λ.

Assume that λ ̸∈ {λ1, λ2, λ3, λ4}. Then X30
λ \{a±

1 , a±
2 } has 6 singular points

x1, . . . , x6, of respective type A1, A1, A1, A2, A2 and A4. Let x be one of these
6 points and let m denote its Milnor number. Then π−1

λ (x) is the union of m

smooth rational curves ∆x
1 , . . . , ∆x

m. Let Ex denote the closure of φ−1
λ (φλ(x))

and let Ẽx denote its strict transform in X̃30
λ . Then

(♡) φ̃−1
λ (φλ(x)) = Ẽx ∪ ∆x

1 ∪ · · · ∪ ∆x
m.

So φ̃−1
λ (φλ(x)) is a singular fiber. Let us determine its type.

Note that φ̂−1
1,2(φλ(x)) is a projective line by Proposition A.3 and Remark

A.5. Therefore, its double cover Ẽx has at most two irreducible components.
Note also that the multiplicity of ∆m

k in the singular fiber φ̃−1
λ (φλ(x)) is equal

to one. Therefore, according to the Kodaira-Néron classification of singular
fibers, (♡) gives the following possibilities:

• If x = x1, x2 or x3 is an A1 singularity, then φ̃−1
λ (φλ(x)) is of type Ã1

or III if Ẽx is irreducible or of type Ã2 or IV if Ẽx has two irreducible
components.

• If x = x4 or x5 is of type A2, then φ̃−1
λ (φλ(x)) is of type Ã2 or IV if

Ẽx is irreducible or of type Ã3 if Ẽx has two irreducible components.
• If x = x6 is of type A4, then φ̃−1

λ (φλ(x)) is of type Ã4 if Ẽx is irreducible
or of type Ã5 if Ẽx has two irreducible components.

Let χk denote the Euler characteristic of the singular fiber above xk. Since the
Euler characteristic of φ̃−1

λ ([0 : 1]) is equal to 7 by (♢), we have

(♠) χ1 + χ2 + χ3 + χ4 + χ5 + χ6 ⩽ 24 − 7 = 17.

But it follows from the above discussion that

χ1 ⩾ 2, χ2 ⩾ 2, χ3 ⩾ 2, χ4 ⩾ 3, χ5 ⩾ 3 and χ6 ⩾ 5.

Therefore, (♠) forces χ1 = χ2 = χ3 = 2, χ4 = χ5 = 3 and χ6 = 5. And so the
singular fibers are of the types described in the first line of Table III.

The cases mentioned in the last four lines of Table III follow from a
similar discussion, the conclusion using the same argument based on the Euler
characteristic. □
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Table III. Some numerical data for the family of K3 surfaces (X̃30
λ )λ∈C

(†) Only for λ generic
Zsing(f2,λ) singularities of X30

λ TX̃30
λ

singular fibers of φ̃λ MWθ̃+
λ

(φ̃λ)

∅ A4 + 4 A2 + 5 A1 Theorem 1.2 D̃5 + Ã4 + 2 Ã2 + 3 Ã
(†)
1 Z

60 A1 E8 + 3 A2 + 4 A1
(
4 2 34

)
Ẽ8 + D̃5 + Ã2 + 2 Ã1 Z

300 A1 E6 + A4 + 2 A2 + 4 A1
(
12 6 58

)
Ẽ6 + D̃5 + Ã4 + 2 Ã1 Z

360 A1 D7 + 4 A2 + 3 A1
(
6 0 132

)
D̃7 + D̃5 + 2 Ã2 + Ã1 Z

600 A1 D5 + A4 + 3 A2 + 3 A1
(
6 0 220

)
2 D̃5 + Ã4 + Ã2 + Ã1 Z

6. The group G31

Hypothesis. We assume in this section, and only in this section, that
W = G31.

Let

s1 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 , s2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,

s3 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 and s4 = 1
2


1 −1 −1 −1

−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

 .

Then W(F4) = G28 = ⟨s1, s2, s3, s4⟩. We set

s5 =


0 i 0 0

−i 0 0 0
0 0 1 0
0 0 0 1

 .

Then G31 = ⟨s1, s2, s3, s4, s5⟩. Note that, even though G31 is of rank 4, it
cannot be generated by only 4 reflections. Note also that |G31/G′

31| = 2 and
that G′

31 = GSL
31.

Recall from [5, Table I] that Deg(W ) = (8, 12, 20, 24) = (d1, d2, d3, d4) and
we denote by f = (f1, f2, f3, f4) a family of fundamental invariants such that
deg(fi) = di. Then f1 and f2 are uniquely determined (up to a scalar). We
have

f1 = Σ(x8) + 14Σ(x4y4) + 168x2y2z2t2,

f2 = Σ(x12) − 33Σ(x8y4) + 792Σ(x6y2z2t2) + 330Σ(x4y4z4).
We will make a special choice for f3 as follows. First, let N denote the nor-
malizer of G28 in G31. Then N has index 10 in G31 and we denote by [G31/N ]
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a set of representatives of the cosets in G31/N . Then x2 + y2 + z2 + t2 is
G28-invariant (but not N -invariant) and it turns out that

f3 =
∏

g∈[G31/N ]

g(x2 + y2 + z2 + t2)

is a fundamental invariant of degree 20 of G31. Of course, Z (f3) is not irre-
ducible (it is the union of 10 quadrics). We choose the set of representatives
[G31/N ] such that the coefficient of x14y2z2t2 in f3 is equal to 648. Then

f3 = 648(Σ(x14y2z2t2) − Σ(x12y4z4) − Σ(x10y6z2t2)
+ 2Σ(x8y8z4) + 13Σ(x8y4z4t4) − 14Σ(x6y6z6t2)).

Finally, we set

f4 = 3888(Σ(x18y2z2t2) + 2Σ(x16y4z4) − 12Σ(x14y6z2t2) − 2Σ(x12y8z4)
+ 76Σ(x12y4z4t4) + 22Σ(x10y10z2t2) − 52Σ(x10y6z6t2)
+ 36Σ(x8y8z8) + 36Σ(x8y8z4t4) − 8x6y6z6t6).

Then f = (f1, f2, f3, f4) is a family of fundamental invariants of G31. Note that
the coefficients 648 (for f3) and 3888 (for f4) are just chosen for simplifying
the general equation of the surfaces studied in this section.

If λ ∈ C, we set f3,λ = f3 + λf1f2. Recall from [4] that there are only 6
values of λ such that Z (f3,λ) is singular: one of them is 0, which is the only
value of λ for which Z (f3,λ) is not irreducible. We set

X31
λ = Z (f3,λ)/G′

31

(it is a K3 surface with ADE singularities by [5, Theorem 5.4]) and we denote by
X̃31

λ its minimal resolution (it is a smooth K3 surface). We aim in this section
to prove the results stated in Table II, namely compute the singularities of X31

λ

and the Picard number of X̃31
λ . We will also provide some more information

about the geometry of Z (f3,λ) and X31
λ (lines, branch locus of the double cover

X31
λ → Z (f3,λ)/G31 = P2(C),. . . ).

6.1. Equations, branch locus

Let ξλ : X31
λ → Z (f3,λ)/G31 = P2(C) be the natural map. This is a double

cover, whose branch locus Rλ ⊂ P2(C) is a sextic that will be described below.
First [5, Proposition 3.11].

X31
λ = {[x1 : x2 : x4 : j] ∈ P(8, 12, 24, 60) | j2 = Pf (x1, x2, −λx1x2, x4)}.

But P(8, 12, 24, 60) ≃ P(2, 3, 6, 15) ≃ P(2, 1, 2, 5). So there exists a polynomial
qλ ∈ C[y1, y2, y4] which is homogeneous of degree 10 if we assign to y1, y2, y4
the degrees 2, 1, 2, respectively, and such that

X31
λ = {[y1 : y2 : y4 : j] ∈ P(2, 1, 2, 5) | j2 = qλ(y1, y2, y4)}.
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But P(2, 1, 2) ≃ P(1, 1, 1) = P2(C), so there exists a polynomial rλ(z1, z2, z4) ∈
C[z1, z2, z4], which is homogeneous of degree 5 if we assign to z1, z2, z4 the
degrees 1, 1, 1, respectively, and such that

(6.1) X31
λ = {[y1 : y2 : y4 : j] ∈ P(2, 1, 2, 5) | j2 = rλ(y1, y2

2 , y4)}.

Through this description, the action of the unique non-trivial element σ of
G31/G′

31 is given by

σ([y1 : y2 : y4 : j]) = [y1 : y2 : y4 : −j] = [y1 : −y2 : y4 : j],

and the morphism X31
λ −→ P2(C) is given explicitly by

[y1 : y2 : y4 : j] 7−→ [y1 : y2
2 : y4].

So the branch locus of ξλ is

(6.2) Rλ = {[z1 : z2 : z4] ∈ P2(C) | z2rλ(z1, z2, z4) = 0}.

In other words, the sextic Rλ is the union of the projective line B̄2 defined by
z2 = 0 and of the quintic R′

λ = Z (rλ).

6.1.1. Other model. Let

Xλ = {[z1 : z2 : z4 : t] ∈ P(1, 1, 1, 3) | t2 = z2rλ(z1, z2, z4)}.

Then Xλ → P2(C), [z1 : z2 : z4 : t] 7→ [z1 : z2 : z4] is a double cover of P2(C)
ramified on the sextic Rλ = B̄2 ∪ R′

λ. The rational map

ι : P(2, 1, 2, 5) −→ P(1, 1, 1, 3)
[y1 : y2 : y4 : j]2,1,2,5 7−→ [y1 : y2

2 : y4 : y2j]1,1,1,3

is well-defined outside of [0 : 0 : 0 : 1]2,1,2,5 and is birational (it is for instance
an isomorphism between the open subsets defined, respectively, by y2 ̸= 0 and
z2 ̸= 0). But note that [0 : 0 : 0 : 1]2,1,2,5 ̸∈ X31

λ and that ι(X31
λ ) = X 31

λ . Also
X31

λ (resp. Xλ) is contained in the open subsets defined by (yi ̸= 0)i∈{1,2,4}
(resp. (zi ̸= 0)i∈{1,2,4}). An immediate computation in all these open subsets
show that ι induces an isomorphism X31

λ
∼−→ Xλ. As this second model is

somewhat simpler to work with, we will now identify X31
λ with Xλ and so view

X31
λ in the more classical model for double covers of P2(C) ramified above a

sextic:

(6.3) X31
λ = {[z1 : z2 : z4 : t] ∈ P(1, 1, 1, 3) | t2 = z2rλ(z1, z2, z4)}.

Through this model, the double cover morphism ξλ : X31
λ −→ P2(C) is just

given by ξλ([z1 : z2 : z4 : t]) = [z1 : z2 : z4].
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6.1.2. Value of rλ. The explicit value of the polynomial rλ is given below
(recall that it depends on our special choice of the family f of fundamental
invariants and a suitable normalization for J):

rλ = − 432 λ3(λ + 1) z3
1z2

2 − 108 λ2 z3
1z2z4

+ (12500 λ6 + 22500 λ5 + 10800 λ4 + 864 λ3) z2
1z3

2

+ (4125 λ4 + 3420 λ3 + 216 λ2) z2
1z2

2z4 + 222 λ2 z2
1z2z2

4 + z2
1z3

4

− 432 λ3 z1z4
2 + (900 λ3 − 108 λ2) z1z3

2z4 + (−500 λ3 + 210 λ2) z1z2
2z2

4

+ (−150 λ2 − 24 λ − 2) z1z2z3
4 − 2 z1z4

4 + z2
2z3

4 − 2 z2z4
4 + z5

4 .

Remark 6.4. Assume in this remark, and only in this remark, that λ = 0. Then

X31
0 ={[z1 : z2 : z4 : t] ∈ P(1, 1, 1, 3) | t2 =z3

4(z2
1+z2

2+z2
4−2z1z2−2z1z4−2z2z4)}.

The singular locus is a union of the point [1 : 0 : 1 : 0] and the smooth rational
curve defined by z4 = t = 0. So the singular locus has dimension 1 and the
surface X31

0 will not be considered in this section.

Hypothesis. From now on, and until the end of this section, we assume
that λ ̸= 0.

6.2. Singular icosics

As explained in the introduction of this section, it follows from [4] that there
are 5 values of λ ∈ C× such that Z (f3,λ) is singular. We explain here what are
these special values, and how we can recover the singularities of Z (f3,λ)/G′

31
thanks to [5, Proposition 4.4] and Magma computations.

First, we set

W145 = ⟨s1, s4, s5⟩, W245 = ⟨s2, s4, s5⟩ and W1234 = ⟨s1, s2, s3, s4⟩.

Note that these are representatives of conjugacy classes of maximal parabolic
subgroups of W . If k ∈ {145, 245, 1234}, we denote by vk a generator of the line
V Wk , and we set zk = [vk] = V Wk ∈ P(V ) = P3(C). We also set Nk = NW (Wk)
and we denote by Ωk the W -orbit of zk: it follows from [5, Remark 2.5] that
|Ωk| = |W |/|Nk|. Concretely, we have:

(6.5) |Ωk| =


960 if k = 145,
480 if k = 245,
60 if k = 1234.

A Magma computation shows that

(6.6) Z (f1) and Z (f2) are smooth.

In particular, vk ̸∈ Z (f1) ∪ Z (f2) by [5, Corollary 2.4]. So we can define
λk = −f3(vk)/(f1f2)(vk). It turns out that λ1234 = 0, so that f3,λ1234 = f3 is
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not irreducible: this case does not lead to a K3 surface and will not be studied
here.

Therefore, we have found in this way two values of λ, namely λ145 and λ245,
such that Z (f3,λ) is irreducible and singular. But there are three more values
of λ such that Z (f3,λ) is irreducible and singular [4]: this shows, by opposition
with the cases of G29 (in degree 8) and G30 (in degree 12), [5, Corollary 2.4]
that it is not sufficient to explain all the singular icosics that can be constructed
from fundamental invariants of G31 of degree 20. With our choice of the family
f of fundamental invariants of G31, we have

λ145 = − 8
25 and λ245 = − 81

175 .

We set
λ1 = 1, λ2 = −1

3 and λ3 = −1
2 .

Then λ145, λ245, λ1, λ2, λ3 are the five values of λ such that Z (f3,λ) is irre-
ducible and singular. By [4, Proposition 3.6 and Table 4] and the correction
statement at https://doi.org/10.1080/10586458.2018.1555778, the singu-
larities of Z (f3,λk

) are given by

(6.7) Zsing(f3,λk
) =



960 A1 if k = 145,
480 A1 if k = 245,
1920 A1 if k = 1,
1440 A2 if k = 2,
640 A3 if k = 3.

6.3. Springer theorem, base locus

Recall from [5, Table I] that{
Deg(W ) = (8, 12, 20, 24),
Codeg(W ) = (0, 12, 16, 28).

The following facts can be deduced immediately from this and from [5, Theo-
rem 3.13]:

(a) δ(8) = δ∗(8) = 2, so dim V (8) = 2. We denote by L8 the line P(V (8)) ⊂
P(V ) = P3(C). Then W (8) = CW (w8) is a reflection group for its
action on V (8), and its degrees are (8, 24). So |W (8)| = 8 · 24 = 192
by [5, (3.1)], and so the W -orbit of L8 contains 240 lines.

(b) δ(12) = δ∗(12) = 2, so dim V (12) = 2. We denote by L12 the line
P(V (12)) ⊂ P(V ) = P3(C). Then W (12) = CW (w12) is a reflection
group for its action on V (12), and its degrees are (12, 24). So |W (12)| =
12 ·24 = 288 by [5, (3.1)], and so the W -orbit of L12 contains 160 lines.

(c) δ(20) = δ∗(20) = 1, so dim V (20) = 1. We denote by z20 ∈ P3(C) the
point defined by the line V (20). Then W (20) = CW (w20) = ⟨w20⟩ is
cyclic of order 20.
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(d) δ(24) = δ∗(24) = 1, so dim V (24) = 1. We denote by z24 ∈ P3(C) the
point defined by the line V (24). Then W (24) = CW (w24) = ⟨w24⟩ is
cyclic of order 24.

It follows from the above discussion and [5, Theorem 3.13(f)] that, if e ∈
{8, 12, 20, 24}, then the eigenvalues of we are ζ−7

e , ζ−11
e , ζ−19

e and ζ−23
e and

so

(6.8) det(we) = ζ−60
e =

{
−1 if e ∈ {8, 24},
1 if e ∈ {12, 20}.

Proposition 6.9. With the above notation, we have that z24 ∈ Z (f3,λ), that
L8 and L12 are contained in Z (f3,λ) and that z20 ̸∈ Z (f3,λ).

Proof. The facts that z24 ∈ Z (f3,λ) and that L8 and L12 are contained in
Z (f3,λ) follow from [5, Lemma 2.2].

Again by [5, Lemma 2.2], we have f1(z20) = f2(z20) = f4(z20) = 0, so that
we cannot have f3(z20) = 0 since 0 is the only common zeros of the fundamental
invariants (fk)1 ⩽ k ⩽ 4. Hence z20 ̸∈ Z (f3,λ). □

This shows in particular that Z (f3,λ) contains at least 400 lines (the W -
orbit of L8 of length 240 and the W -orbit of L12 of length 160): it can be shown
that, for λ generic, these are the only lines contained in Z (f3,λ).

Now, let
B = Z (f3) ∩ Z (f1f2)

denote the base locus of the family (Z (f3,λ))λ∈C× . We write

B1 = Z (f3) ∩ Z (f1) and B2 = Z (f3) ∩ Z (f2),

so that
B = B1 ∪ B2.

By [5, Theorem 3.13(d)], we have

(6.10) B1 =
⋃

x∈W

x(L12) and B2 =
⋃

x∈W

x(L8).

We denote by B′ the image of B in P(V )/W ′ (it is the base locus of the family
(X31

λ )λ∈C). Then
B′ = B′

1 ∪ B′
2,

where B′
j denotes the image of Bj . It can be checked that the stabilizers

CW (w8) and CW (w12) of L8 and L12 in W , respectively, are not contained in
W ′. So B′

1 (resp. B′
2) is also the image of L12 (resp. L8), hence it is a (possibly

singular) rational curve.

Proposition 6.11. The rational curve B′
2 is smooth, while the rational curve

B′
1 has singularities A1 + A2.
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Proof. From the explicit formula for rλ given in §6.1.2, we have

B′
1 = {[z1 : z2 : z4 : t] ∈ P(1, 1, 1, 3) | z1 = 0 and t2 = z2z3

4(z2 − z4)2}

and
B′

2 = {[z1 : z2 : z4 : t] ∈ P(1, 1, 1, 3) | z2 = t = 0}.

So B′
2 = P(1, 1) = P1(C) as expected. Let us now consider the case of B′

1. An
easy computation in the affine charts defined by z2 ̸= 0 and z4 ̸= 0 gives two
singular points [0 : 1 : 0 : 0] and [0 : 1 : 1 : 0] which are singularities of type A2
and A1, respectively. □

Note that the set theoretic intersection of B′
1 and B′

2 consists of only one
point (let us call it z′

24 as it is the image of z24 ∈ Z (f3,λ) ⊂ P(V )). Its
coordinates are given by

z′
24 = [0 : 0 : 1 : 0] ∈ X31

λ ⊂ P(1, 1, 1, 3).

Its image z̄24 = [0 : 0 : 1] ∈ P2(C) is a smooth point of the branch locus Rλ

(for all values of λ, because rλ(0, 0, 1) = 1 ̸= 0).

Remark 6.12. Let B̄1 and B̄2 denote the respective images of B′
1 and B′

2 in
X31

λ /⟨σ⟩ = P2(C). Then B̄1 (resp. B̄2) is the line defined by the equation
z1 = 0 (resp. z2 = 0). Note that the morphism B′

2 −→ B̄2 is an isomorphism
(as B′

2 is contained in the ramification locus) while the morphism B′
1 −→ B̄1

is a morphism of degree 2.
Recall that the branch locus of X31

λ → P2(C) is the union of B̄2 and R′
λ =

Z (rλ). So

B̄2 ∩ R′
λ = {[z1 : 0 : z4] ∈ P2(C) | z3

4(z1 − z4)2 = 0}.

The set B̄2 ∩ R′
λ contains two points d6 and a3 of respective multiplicity 3 and

2 and whose coordinates are given by

d6 = [1 : 0 : 0] and a3 = [1 : 0 : 1].

They do not depend on λ. We will see in Corollary 6.14 and Proposition 6.15
that, if λ ̸= 0, then d6 is always a D6 singularity of Rλ while a3 is an A3
singularity except whenever λ = λ2 (in which case it is a D5 singularity).

6.4. Singularities

We wish to determine the list of singularities of X31
λ . We gather in the next

proposition some helpful general facts, from which we can deduce the list of
singularities of X31

λ thanks to a few computations with Magma.

Proposition 6.13. Let v ∈ V \ {0} and let z = [v]. We assume that z is a
smooth point of Z (f3,λ) and we denote by z′ its image in X31

λ .
(a) If |Wv| = 1 or 2, then z′ is smooth.
(b) If z ∈ B and Wv has rank 2, then Tz(Z (f3,λ)) together with its action

of Wz does not depend on λ.
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(c) If P is a parabolic subgroup of rank 2 and if z ∈ (Z (f3,λ)\B)∩P(V P ),
then Wv = P and Wz = P ⟨w4⟩.

Proof. (a) Assume first that Wv = {1}. Then Wz = ⟨wez
⟩ and 4 divides ez

(see [5, §4.1, Fact (a)]). Since ez divides one of the degrees, we have ez ∈
{4, 8, 12, 20, 24}. Note that ez ̸= 20 by Proposition 6.9.

If ez = 4, then (PW )z = {1} and so z′ is smooth. If ez ∈ {8, 12, 24}, then
δ(ez) = δ∗(ez) and the eigenvalues of wez

on the tangent space Tz(Z (f3,λ))
are given by [5, Corollary 3.15(b)] and the determinant of wez

is given by (6.8).
So we get:

• If ez = 8, then det(wez ) = −1 and so W ′
z = ⟨w2

8⟩ = ⟨w4⟩. So (PW ′)z =
{1}, which implies that z′ is smooth.

• If ez = 12, then det(wez
) = 1 and the eigenvalues of wez

on Tz(Z (f3,λ))
are ζ−8

12 and ζ−24
12 = 1, so wez acts as a reflection on Tz(Z (f3,λ)). This

implies that z′ is smooth.
• If ez = 24, then det(wez

) = −1 so W ′
z = ⟨w2

ez
⟩. Moreover, the eigen-

values of w2
ez

on Tz(Z (f3,λ)) are ζ−16
24 and ζ−24

24 = 1, so w2
ez

acts as a
reflection on Tz(Z (f3,λ)). This implies that z′ is smooth.

This shows (a) whenever Wv = {1}.
Let us now assume that |Wv| = 2. Since wez

normalizes Wv, this means that
wez

commutes with the non-trivial element of Wv, which is a reflection. But a
Magma computation shows that we does not commute with any reflection if
e ∈ {8, 12, 24}. So ez = 4, which means that (PW ′)z = {1}. So z′ is smooth.

(b) Assume that z ∈ B and that Wv has rank 2. Then Tz(Z (f3,λ)) is a
dimension 2 subspace of Tz(P(V )) which is stable under the action of Wv: but
Tz(P(V )) = V/z endowed with the natural action of Wv which is of rank 2, so
there is a unique Wv-stable dimension 2 subspace of Tz(P(V )). This shows (b).

(c) Assume that P is a parabolic subgroup of rank 2 and that z ∈ (Z (f3,λ)\
B) ∩ P(V P ). The fact that z ̸∈ B implies that ez ̸∈ {8, 12, 24} by (6.10). This
shows that Wz = Wv⟨w4⟩. On the other hand, P = Wv by [5, (4.2)]. □

Corollary 6.14. If λ ∈ C is such that Z (f3,λ) is smooth, then X31
λ has sin-

gularities D6 + A3 + 3 A2 + 2 A1.

Proof. The previous proposition shows that it is sufficient to determine a set of
representatives of conjugacy classes of parabolic subgroups P of rank 2 and to
determine the action of Wz on Tz(Z (f3,λ)) for all z ∈ Z (f3,λ) ∩ P(V P ). Let

W14 = ⟨s1, s4⟩, W15 = ⟨s1, s5⟩ and W123 = ⟨s1, s2, s3⟩.

We set Nk = NW (Wk) and Lk = P(V Wk ) for k ∈ {14, 15, 123}. Computations
with Magma show that:

• W14, W15, W123 are representatives of conjugacy classes of parabolic
subgroups of rank 2.

• W14 is a Coxeter group of type A2 and |N14/W14⟨w4⟩| = 6. Moreover:
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– L14 ∩B1 contains 2 elements which form a single N14-orbit. If z ∈
L14 ∩ B1, then the action of W ′

z on Tz(Z (f3,λ)) can be computed
for a single value of λ thanks to Proposition 6.13(b), and it can
be checked that it acts as a reflection group, so the image of z is
smooth.

– L14 ∩ B2 = ∅.
– So it remains 18 points in (Z (f3,λ)\B)∩L14: since the stabilizers

of these points are equal to W14⟨w4⟩ by Proposition 6.13(c), their
N14-orbits have cardinality 6, so there are 3 such orbits, each
leading to an A2-singularity because W14 is of type A2.

• W15 is a Coxeter group of type A1 ×A1 and |N15/W15⟨w4⟩| = 8. More-
over:

– L15 ∩ B1 = ∅.
– L15 ∩B2 contains 4 elements which form a single N15-orbit. If z ∈

L15 ∩ B2, then the action of W ′
z on Tz(Z (f3,λ)) can be computed

for a single value of λ thanks to Proposition 6.13(b), and then it
can be checked that the image of z is an A3-singularity.

– So it remains 16 points in (Z (f3,λ)\B)∩L15: since the stabilizers
of these points are equal to W15⟨w4⟩ by Proposition 6.13(c), their
N15-orbits have cardinality 8, so there are 2 such orbits, each
leading to an A1-singularity because W15 is of type A1 × A1.

• W123 is a complex reflection group of type G(4, 2, 2) and
|N123/W123⟨w4⟩| = 24. Moreover:

– L123 ∩ B1 contains 8 elements which form a single N123-orbit.
Again, Proposition 6.13(b) allows an easy computation which im-
plies that the image of z is smooth.

– L123 ∩ B2 contains 12 elements which form a single N123-orbit.
Again, Proposition 6.13(b) allows an easy computation which im-
plies that the image of z is a D6-singularity.

– It remains no point in (Z (f3,λ) \ B) ∩ L123.
The proof of the corollary is complete. □

Proposition 6.15. If k ∈ {145, 245, 1, 2, 3}, then the singularities of X31
λk

are
given by Table II, i.e.,

(a) The surface X31
λ145

= X31
−8/25 has singularities D6 + D5 + A3 + 2 A2.

(b) The surface X31
λ245

= X31
−81/175 has singularities E6 +D6 +A3 +A2 +A1.

(c) The surface X31
λ1

= X31
1 has singularities D6 + A5 + A3 + A2 + 2 A1.

(d) The surface X31
λ2

= X31
−1/3 has singularities D6 + D5 + 3 A2 + A1.

(e) The surface X31
λ3

= X31
−1/2 has singularities D6 + 2 A3 + 2 A2 + 2 A1.

Proof. Using the formula for rλ given in the previous subsection, one can easily
obtain the equation of the branch locus Rλk

for the five values of k. The
singularities of the curve Rλk

are then easily determined thanks to Magma
and we conclude thanks to [5, Proposition 4.4]. □
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This has the following consequence, which confirms some of the results of
Table II:

Corollary 6.16. Let λ ∈ C×. Then:
(a) If λ ̸∈ {λ145, λ245, λ1, λ2, λ3}, then ρ(X̃31

λ ) ⩾ 18.
(b) For generic λ, we have ρ(X̃31

λ ) = 18.
(c) If λ ∈ {λ145, λ245, λ1, λ2, λ3}, then ρ(X̃31

λ ) = 19.

Proof. Let λ ∈ C×. We denote by m the sum of the Milnor numbers of the
singularities of X31

λ (i.e., m is the number of smooth rational curves in the ex-
ceptional divisors of the resolution πλ : X̃31

λ −→ X31
λ ). Then ρ(X̃31

λ ) ⩾ 1 + m
since X31

λ is projective, so one can check from Corollary 6.14 and Proposi-
tion 6.15 the following two facts:

(♣)
{

If λ ̸∈ {λ145, λ245, λ1, λ2, λ3}, then ρ(X̃31
λ ) ⩾ 18;

If λ ∈ {λ145, λ245, λ1, λ2, λ3}, then ρ(X̃31
λ ) ⩾ 19.

Note that (♣) proves the inequality stated in (a).
Let us now prove the equalities stated in (b) and (c). We shall use the

methods developed by van Luijk [29] and Elsenhans and Jahnel [11, §3.3.1],
based on the Artin-Tate Conjecture (proved by Nygaard and Ogus for K3
surfaces [19] in characteristic ⩾ 5), but we adapt them to the singular case.
For this, assume that λ ∈ Q and let Pλ denote the set of prime numbers p
such that:

(1) p ⩾ 5 and p does not divide any denominator of any coefficient of rλ (so
that we can define a reduction of X31

λ modulo p, which will be defined
over Fp and will be denoted by (X31

λ )p: we also denote by (Rλ)p the
reduction modulo p of the ramification locus of πλ).

(2) If Oλ is the ring of integers of the minimal number field Kλ containing
the coordinates of all the singular points of X31

λ and if pλ is a prime
ideal of Oλ lying over p, then Oλ/pλ = Fp and all the singular points
of (X31

λ )p have coordinates in Fp and are the reduction modulo pλ of
the singular points of X31

λ .
(3) If x ∈ X31

λ is a singular point, then its reduction modulo p is an ADE
singularity of (X31

λ )p of the same type as x.
So let p ∈ Pλ. We denote by (X̃31

λ )p the minimal resolution of the K3
surface (X31

λ )p. Then (X̃31
λ )p is the reduction modulo p of X31

λ by (1), (2)
and (3), because (X̃31

λ )p is obtained from X31
λ by the same sequence of blow-

ups. This shows in particular that X̃31
λ has good reduction modulo p (i.e.,

remains smooth) and that its reduction modulo p is exactly (X̃31
λ )p.

We denote by Pλ,p ∈ Z[T ] (resp. P̃λ,p ∈ Z[T ]) the Weil polynomial of (X31
λ )p

(resp. (X̃31
λ )p), namely the characteristic polynomial of the Frobenius map on

the second ℓ-adic cohomology group of (X31
λ )p (resp. (X̃31

λ )p). Note that the
polynomial Pλ,p can be computed explicitly (and efficiently!) thanks to the
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command WeilPolynomialOfDegree2K3Surface in Magma and that
(♢) P̃λ,p = (T − p)mPλ,p,

where we recall that m is the number of irreducible components of the excep-
tional divisors of the minimal resolution of X31

λ (or of (X31
λ )p, as they are all

defined over Fp by (2) and (3)). Let ρλ,p denote the (T − p)-valuation of Pλ,p

and let Qλ,p = Pλ,p/(T − p)ρλ,p . Let ρg
λ,p denote the number of root of Qλ,p of

the form ζp, where ζ is a root of unity (note that ρg
λ,p ⩾ ρλ,p). Also, we denote

by Dλ ∈ Q× the discriminant of the Picard group of X31
λ .

We denote by Picg((X̃31
λ )p) the geometric Picard group of (X̃31

λ )p, namely
the Picard group of Fp ×Fp

(X̃31
λ )p. Then Artin-Tate Conjecture and (♢) say

that
(♡) m + ρλ,p = rk Pic((X̃31

λ )p) and m + ρg
λ,p = rk Picg((X̃31

λ )p).

Reduction modulo p induces an injective map Pic X̃31
λ ↪→ Picg((X̃31

λ )p) (see [28,
Proposition 6.2]). Hence

(♠) ρ(X̃31
λ ) ⩽ m + ρg

λ,p.

Moreover, if these two groups have the same rank, then their discriminant are
equal modulo Q×2. By Artin-Tate Conjecture and (♡), this forces

(♠+) If ρ(X̃31
λ )=m+ρg

λ,p =m+ρλ,p, then Dλ ≡pm+ρg
λ,p

−21Qλ,p(p) mod Q×2.

With all these tools in hand, we proceed as follows (numerical results stated
below are obtained with Magma).

(b) By (♣), ρ(X̃31
−1/4) ⩾ 18. Note that m = 17 in this case. On the other

hand, 193 ∈ P−1/4 and

P−1/4,193 = (T − 193)(T 4 + 212 T 3 + 10422 T 2 + 7896788 T + 1387488001).

This shows that Q−1/4,193 = T 4 +212 T 3 +10422 T 2 +7896788 T +1387488001.
Since this polynomial has no root of the form 193ζ with ζ a root of unity, we get
that ρ−1/4,193 = ρg

−1/4,193 = 1 and so ρ(X̃31
−1/4) ⩽ 18 by (♠). This proves (b)

for λ = −1/4 and so this proves (b) for λ generic.
(c) We explain how to prove (c) whenever λ = λ145 = −8/25, the other

cases being treated similarly. Note first that m = 18 in this case. By (♣),
ρ(X̃−8/25) ∈ {19, 20}. Note that 23 and 47 belong to P−8/25. We have

P−8/25,23 = (T − 23)2(T 2 + 38 T + 529) and Q−8/25,23(23)/23 ≡ 21 mod Q×2,

P−8/25,47 = (T −47)2(T 2 +22 T +2209) and Q−8/25,47(47)/47 ≡ 29 mod Q×2.

Assume that ρ(X̃−8/25) = 20. Then

20=ρ(X̃−8/25) = m+ρ−8/25,23 = m+ρg
−8/25,23 = m+ρ−8/25,47 = m+ρg

−8/25,47,

so it follows from (♠+) that 21 ≡ 29 mod Q×2, which is impossible. So
ρ(X̃31

−8/25) = 19, as expected. □
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Remark 6.17 (Supersingular surfaces). Keep the notation of the proof of Corol-
lary 6.16. For each exceptional value of λ (i.e., λ ∈ {λ145, λ245, λ1, λ2, λ3}) there
exist prime numbers p such that X̃31

λ has good reduction modulo p and (X̃31
λ )p

is a supersingular variety (i.e., has geometric Picard number 22). We give here
a (non-exhaustive) list of examples. So assume that (λ, p) is a pair, where
λ ∈ {λ145, λ245, λ1, λ2, λ3} and p is a prime number such that:

• If λ = λ145 = −8/25, then p ∈ {59, 73, 89}.
• If λ = λ245 = −81/175, then p ∈ {31, 47, 73}.
• If λ = λ1 = 1, then p = 43.
• If λ = λ2 = −1/3, then p = 337.
• If λ = λ3 = −1/2, then p ∈ {73, 79}.

Then (X̃31
λ )p is supersingular.

Remark 6.18. Note that, generically, rλ is irreducible. However, rλ1 and rλ3

are not irreducible4:
• The quintic R′

λ1
= R′

1 is the union of a smooth irreducible conic and an
irreducible cubic. More detail about this case will be given in §7.4.2.

• The quintic R′
λ3

= R′
−1/2 is the union of a line and an irreducible

quartic. More detail about this case will be given in §7.4.3.

6.5. Complements

Notice that
f1 = Σ(x8) + 14Σ(x4y4) + 168x2y2z2t2

is the polynomial which defines the smooth octic containing 352 lines con-
structed by Boissière and the second author [2]. We will revisit here this ex-
ample.

Let

σ =
√

2
2


−1 0 0 −1
0 1 1 0
0 1 −1 0

−1 0 0 1

 .

Then σ(si) = s5−i if i ∈ {1, 2, 3, 4} and ζ8σ ∈ G31. Moreover, ζ8σ normalizes
the subgroup G28. In [2], the polynomial f1 was constructed as a particular
invariant of the one-parameter family of fundamental invariants of degree 8 of
the group ⟨σ⟩⋉GSL

28 (which is contained in ⟨ζ8⟩G31), but it turns out that this
is exactly the one which is invariant by G31.

The 352 lines on Z (f1) are divided into two G31-orbits: one of size 160 and
one of size 192. We explain here how to construct these two orbits.

First, as 12 does not divide 8, the G31-orbit of L12 is contained in Z (f1)
by [5, Lemma 2.2], so this explains the first orbit with 160 lines. For construct-
ing the second orbit, one requires some more material. Let W = G37 = W(E8)

4We do not know if there are other values of λ such that rλ is not irreducible.
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acting on a vector space V8 of dimension 8. The list of degrees (resp. code-
grees) of W is (2, 8, 12, 14, 18, 20, 24, 30) (resp. (0, 6, 10, 12, 16, 18, 22, 28)). Ap-
plying [5, Theorem 3.13] with W and e = 4 shows that there exists an element
w4 ∈ W such that dim V8(w4, i) = 4, W (V8(w4, i)) = {1} and WV8(w4,i) acts
on V8(w4, i) as a reflection group whose list of degrees is (8, 12, 20, 24): in fact,
WV8(w4,i) ≃ G31 (as a reflection group). Therefore, we may identify V with
V8(w4, i) and G31 with WV8(w4,i).

Now, let ϕ = (1 +
√

5)/2 be the golden ratio. By [14, §3], there exists an au-
tomorphism φ of V8 satisfying φ2 = φ + IdV8 and such that dim V8(φ, ϕ) =
4 and WV8(φ,ϕ) acts faithfully on V8(φ, ϕ) as the complex reflection group
W(H4) = G30. Using again [5, Theorem 3.13] with WV8(φ,ϕ) ≃ G30, we see
that we may choose the above element v as belonging to WV8(φ,ϕ). Moreover,
E = V8(v, i) ∩ V8(φ, ϕ) has dimension 2, and its stabilizer WE acts faithfully on
E as the complex reflection group G22, whose list of degrees is (12, 20) (as they
are the only degrees of W which are divisible by 4). Hence, the restriction of
f1 to E having degree 8 and being invariant under WE = CW (w4), this implies
that f1 vanishes on E. So, if we let L′ = P(E), then L′ is a line contained in
Z (f1), whose stabilizer in G31 has order 12 × 20 = 240. This shows that the
G31-orbit of L′ contains 192 lines which are all contained in Z (f1).

7. The group G31 (continued): elliptic fibrations

We will use here the constructions of Appendix B. Let x be a singular point
of the branch locus Rλ. Since x belongs to the branch locus, there is a unique
point ẋ ∈ X31

λ above x. Let px : P2(C) \ {x} → P1(C) be the projection from
the point x. We denote by P̂2

x(C) the blow-up of P2(C) at x and by X̂x
λ the

blow-up of X31
λ at ẋ. Then:

• The projection px lifts and extends to a morphism p̂x : P̂2
x(C) → P1(C).

• Since X31
λ has only ADE singularities, the map ξλ : X31

λ → P2(C) lifts
to a map ξ̂x

λ : X̂x
λ −→ P̂2

x(C) (see Proposition B.1).
• Since X31

λ has only ADE singularities, its minimal resolution is obtained
by successive blow-ups of singular points. In particular, the morphism
πλ : X̃31

λ → X31
λ factorizes through π̂x

λ : X̃31
λ → X̂x

λ .
Altogether, this gives a well-defined morphism of varieties

φ̃x
λ = p̂x ◦ ξ̂x

λ ◦ π̂x
λ : X̃31

λ −→ P1(C),

i.e., an elliptic fibration.
This gives lots of elliptic fibrations, and the particular values λk of λ must

also be treated separately. For this reason, we will not compute the singular
fibers in all cases. We will just provide general facts about sections, use them
to determine the intersection graph of the curves contained in π−1

λ (B′
2) and

just focus on singular fibers of the fibration φ̃d6
λ .

Question. Are there other elliptic fibrations on the surface X̃31
λ ?
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7.1. Sections

Let us first discuss the question of sections of the elliptic fibration associ-
ated with φ̃x

λ, using Proposition B.3. For this, let Êx denote the exceptional
divisor of the blow-up P̂2

x(C) (it is isomorphic to P1(C) and maps isomorphi-
cally to P1(C) through p̂x). If we denote by m the Milnor number of ẋ and by
∆x

1 , . . . , ∆x
m the smooth rational curves of the exceptional divisor of X̂ ẋ

λ , then
Proposition B.3 implies that:

• If m ⩾ 2 and x is an Am-singularity (and if we assume that the smooth
rational curves ∆x

j are numbered so that the extremal vertices of their
intersection graph are ∆x

1 and ∆x
m, then ∆x

1 and ∆x
m are exchanged

by σ and are mapped isomorphically to Êx. This gives two sections
θ±

x : P1(C) −→ X̃31
λ of the elliptic fibration φ̃x

λ satisfying θ−
x = σ ◦ θ+

x .
• If x is not of type A, then only one of the smooth rational curves ∆x

j

maps isomorphically to Êx. This leads to a section θx : P1(C) −→ X̃31
λ

of φ̃x
λ.

Note also that any line L of P2(C) not containing x maps isomorphically
through the projection px, so its inverse image L̂ ≃ L in P̂2

x(C) maps iso-
morphically to P1(C) through p̂x. Applied to the line B̄2, and using the fact
that B̄2 lies in the branch locus (and so the map B′

2 −→ B̄2 is an isomor-
phism), we see that, if x ̸∈ B̄2, then the elliptic fibration φ̃x

λ admits a section
θB

x : P1(C) −→ X̃31
λ whose image is the strict transform B̃′

2 of B′
2 in X̃31

λ . We
summarize the above discussion in the next proposition:

Proposition 7.1. Let x be a singular point of Rλ. Then:
(a) If m ⩾ 2 and if x is an Am singularity, then the elliptic fibration φ̃x

λ

admits two sections θ±
x whose images are the two extremal smooth ra-

tional curves of the exceptional divisor π̃−1
λ (ẋ).

(b) If x is not a type A singularity, then the elliptic fibration φ̃x
λ admits a

section whose image is one of the smooth rational curves of the excep-
tional divisor π̃−1

λ (ẋ).
(c) If x ̸∈ B̄2 (i.e., if x ̸∈ {a3, d6}), then the elliptic fibration φ̃x

λ admits a
section whose image is B̃′

2.

7.2. Intersection graph in π−1
λ (B′

2) and the elliptic fibration φ̃a3
λ

Recall that a3 and d6 are the only singular points of Rλ belonging to B′
2. It

will be interesting for computing Picard numbers to determine the intersection
graph between the smooth rational curves of π−1

λ (ḋ6), the ones of π−1
λ (ȧ3) and

the strict transform B̃′
2 of B′

2 in X̃31
λ . This will be done thanks to the elliptic

fibrations constructed in this section. We need some notation. The point
ḋ6 ∈ X31

λ is always a D6 singularity. We assume that the 6 smooth rational
curves (∆d6

k )1 ⩽ k ⩽ 6 of the exceptional divisor π−1
λ (ḋ6) are numbered in such

a way that the intersection graph is given by
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i∆d6
1

i∆d6
2

@
@

�
�

i∆d6
3 i∆d6

4 i∆d6
5 i∆d6

6

We denote by m3(λ) the Milnor number of the singularity ȧ3. If λ ̸= λ2 =
−1/3 (resp. λ = λ2), then a3 is an A3 (resp. a D5) singularity, so m3(λ) =
3 (resp. m3(λ) = 5) and we assume that the m3(λ) smooth rational curves
(∆a3

k )1 ⩽ k ⩽ m3(λ) of the exceptional divisor π−1
λ (ȧ3) are numbered in such a

way that the intersection graph is given by

i∆a3
1

i∆a3
2

@
@

�
�

i∆a3
3

(resp.

i∆a3
1

i∆a3
2

@
@

�
�

i∆a3
3 i∆a3

4 i∆a3
5

)

Now, if x is a singular point of X31
λ different from a3 and d6 (there always

exists such a point), then (φ̃x
λ)−1(px(d6)) and (φ̃x

λ)−1(px(a3)) are two singular
fibers (because they contain π−1

λ (ḋ6) and π−1
λ (ȧ3)). Since B̃′

2 is a section of
the elliptic fibration φ̃x

λ by Proposition 7.1, B̃′
2 meets π−1

λ (ḋ6) and π−1
λ (ȧ3)

transversally at only one curve with multiplicity 1. Recall that the multiplicity
1 curves of π−1

λ (ḋ6) (resp. π−1
λ (ȧ3)) are ∆d6

1 , ∆d6
2 and ∆d6

6 (resp. ∆a3
1 , ∆a3

2 and
∆a3

m3(λ), where m3(λ) denote the Milnor number of the singularity ȧ3).
Since σ(B̃′

2) = B̃′
2 and σ(∆a3

1 ) = ∆a3
2 , this forces that B̃′

2 meets π−1
λ (ȧ3)

transversally at ∆a3
m3(λ).

To determine which curve of π−1
λ (ḋ6) meets B̃′

2, we use the elliptic fibration
φ̃a3

λ . First, (φ̃a3
λ )−1(pa3(d6)) contains π−1

λ (ḋ6) and B̃′
2. Moreover, φ̃a3

λ (∆a3
m3(λ))

is a point by Proposition B.3, so it must be the same point as φ̃a3
λ (B̃′

2), which
is φ̃a3

λ (ḋ6) = pa3(d6). Therefore,

(φ̃a3
λ )−1(pa3(d6)) = ∆a3

m3(λ) ∪ B̃′
2 ∪

( 6⋃
k=1

∆d6
k

)
.

The Kodaira-Néron classification of singular fibers then shows that the only
possibility is that (φ̃a3

λ )−1(pa3(d6)) is of type Ẽ7 and B̃′
2 meets ∆d6

1 (by ex-
changing ∆d6

1 and ∆d6
2 if necessary). So we have shown most of the following

lemma:



732 C. BONNAFÉ AND A. SARTI

Lemma 7.2. The intersection graph of curves contained in π−1
λ (B′

2) is as
follows. If λ ̸= λ2 it is given by

i∆a3
1 i∆a3

3

i∆a3
2

iB̃′
2 i∆d6

1

i∆d6
2

i∆d6
3 i∆d6

4 i∆d6
5 i∆d6

6

and if λ = λ2 it is given by

i∆a3
1 i∆a3

3

i∆a3
2

i∆a3
4 i∆a3

5 iB̃′
2 i∆d6

1

i∆d6
2

i∆d6
3 i∆d6

4 i∆d6
5 i∆d6

6

Moreover:
(a) The singular fiber (φ̃a3

λ )−1(pa3(d6)) is of type Ẽ7.
(b) The singular fiber (φ̃d6

λ )−1(pd6(a3)) is of type D̃7 if λ ̸= λ2 and of type
D̃9 if λ = λ2 = −1/3.

Proof. Only the statement (b) has not been proved. First, π−1
λ (ȧ3) and B̃′

2
are contained in (φ̃d6

λ )−1(pd6(a3)). Moreover, it follows from Proposition B.3
that the curves (∆d6

k )1 ⩽ k ⩽ 4 are sent, through φ̃d6
λ , to a single point of P1(C).

Since B̃′
2 meets ∆d6

1 , this point is necessarily pd6(a3). So

(φ̃d6
λ )−1(pd6(a3)) = π−1

λ (ȧ3) ∪ B̃′
2 ∪

( 4⋃
k=1

∆d6
k

)
,

and the result follows from the description of the intersection graph. □

7.3. The elliptic fibration φ̃d6
λ

Since d6 = [1 : 0 : 0], the maps pd6 : P2(C) \ {d6} −→ P1(C) and φd6 :
X31

λ \ {ḋ6} −→ P1(C) are easily described by
pd6([z1 : z2 : z4]) = [z2 : z4] and φd6([z1 : z2 : z4 : t]) = [z2 : z4].

Since ḋ6 is a D6-singularity of X31
λ , the reduced fiber (π̂d6

λ )−1(d6) is isomorphic
to P1(C) and contains two singular points of X̂31

λ : one, which we denote by a,
is an A1 singularity and the other, which we denote by b, is a D4-singularity.
A Magma computation shows that

φ̂d6(a) = [1 : −4λ(λ + 1)] and φ̂d6(b) = [0 : 1] = φd6(a3).
The singular fiber above [0 : 1] has been described in Lemma 7.2(b) so we
concentrate now on the fiber above [1 : −4λ(λ + 1)].

We denote by ∆λ the closure of φ−1
d6

([1 : −4λ(λ + 1)]) in X31
λ : if we denote

by sλ(z1, z2) the quadratic form
sλ(z1, z2) = z2

1 + (−71 λ2 − 52 λ − 8) z1z2 + (8 λ4 + 28 λ3 + 36 λ2 + 20 λ + 4) z2
2 ,
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we have
∆λ = {[z1 : z2 : z4 : t] ∈ X31

λ | z4 = −4λ(λ + 1)z2}
≃ {[z1 : z2 : t] ∈ P(1, 1, 3) | t2 = z2rλ(z1, z2, −4λ(λ + 1)z2)}
= {[z1 : z2 : t] ∈ P(1, 1, 3) | t2 = −16 λ3(2λ + 1)3 z4

2sλ(z1, z2)}.

Note the following fact:

Lemma 7.3. If λ ̸= 0, −1/2, −8/17, then the closed subvariety ∆λ meets the
singular locus of X31

λ at only one point (the point ḋ6).

Proof. This follows from a Magma computation. □

Let ∆̃λ denote the strict transform of ∆λ in X̃31
λ , recall that ∆d6

6 =(π̂d6
λ )−1(a)

and let Eλ denote the fiber (φ̃d6
λ )−1([1 : −4λ(λ + 1)]). Then it follows from

Lemma 7.3 that:

Corollary 7.4. If λ ̸= 0, −1/2, −8/17, then Eλ = ∆̃λ ∪ ∆d6
6 .

However, it must be noticed that ∆λ is not necessarily irreducible. Indeed,

sλ =
(

z1 − 71 λ2 + 52 λ + 8
2 z2

)2

− λ
(17 λ + 8

4

)3
z2

2 .

So ∆λ is irreducible if and only if λ ̸= 0, −8/17 (we retrieve the same special
value as in Lemma 7.3). We deduce from this the following result:

Corollary 7.5. If λ ̸= 0, −1/2, −8/17, then Eλ is a singular fiber of type I2.

Proof. The hypothesis implies that Eλ contains two irreducible components,
namely ∆̃λ and ∆d6

6 . It then follows from the classification of singular fibers
that Eλ is of type Ã1 or III.

Now, let ∆̂λ denote the strict transform of ∆λ in X̂31
λ . From the equation

of ∆λ, we see that d6 is an A3 singularity of ∆λ so that, after blowing-up, a is
an A1 singularity of ∆̂λ. So, after blowing-up a, we see that ∆̃λ meets ∆d6

6 in
two different points, so that Eλ is of type Ã1. □

Proposition 7.6. Let λ ∈ C×. Then the singular fibers of φ̃d6
λ are given by

Table IV.

Proof. Assume first that λ ̸= −1/2, −8/17. Then a Magma computation
shows that, if x and y are two different singular points of X31

λ \ {ḋ6}, then
φd6(x) ̸= φd6(y). Then the result follows from Lemmas 7.2(b) and 7.3 and the
same argument based on Euler characteristic in the proof of Corollary 5.11 to
distinguish between the different possibilities.

The case, where λ = −1/2, will be treated in §7.4.3. So it remains to check
the case, where λ = −8/17. The numerical facts in what follows can be checked
with Magma. Whenever λ = −8/17, ∆−8/17 is not irreducible and contains
one of the A2 singularities of X31

−8/17 (let us call it ȧ2), the singularity ḋ6 and
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Table IV. Some numerical data for the family of K3 surfaces (X̃31
λ )λ∈C×

(†) With equality for λ generic
(‡) Only for λ generic

λ Zsing(f3,λ) singularities of X31
λ ρ(X̃31

λ ) singular fibers of φ̃d6
λ MW(φ̃d6

λ )

̸= λk, −8/17 ∅ D6 + A3 + 3 A2 + 2 A1 ⩾ 18(†) D̃7 + 3 Ã2 + 3 Ã1 0(‡)

−8/17 ∅ D6 + A3 + 3 A2 + 2 A1 19 D̃7 + Ã4 + 2 Ã2 + 2 Ã1 0

λ145 = −8/25 960 A1 D6 + D5 + A3 + 2 A2 19 D̃7 + D̃5 + 2 Ã2 + Ã1 0

λ245 = −81/175 480 A1 E6 + D6 + A3 + A2 + A1 19 Ẽ6 + D̃7 + Ã2 + 2 Ã1 0

λ1 = 1 1920 A1 D6 + A5 + A3 + A2 + 2 A1 19 D̃7 + Ã5 + Ã2 + 3 Ã1 Z/2Z

λ2 = −1/3 1440 A2 D6 + D5 + 3 A2 + A1 19 D̃9 + 3 Ã2 + 2 Ã1 0

λ3 = −1/2 640 A3 D6 + 2 A3 + 2 A2 + 2 A1 19 D̃7 + D̃5 + 2 Ã2 + Ã1 0

no other singular points of X31
−8/17 and splits into two irreducible components

which we call ∆1
−8/17 and ∆2

−8/17. Their intersection contains only the points
ḋ6 and ȧ2. One can check that they are both smooth at ȧ3 and that the tangent
line of ∆1

−8/17 at ȧ2 is different than the one of ∆2
−8/17. Therefore, E−8/17 is

the union of five irreducible components ∆d6
6 , ∆̃1

−8/17, ∆̃2
−8/17, ∆a2

1 and ∆a2
2

and the last four form an A4 configuration whose extremal curves are ∆̃1
−8/17

and ∆̃2
−8/17. Since these extremal curves both meet ∆d6

6 , the only possibility
for the singular fiber (φ̃d6

λ )−1(φd6(ȧ2)) is to be of type Ã4. The other singular
fibers are obtained as in the previous case, using again Euler characteristic to
remove ambiguities. □

Recall from Proposition 7.1(b) that the elliptic fibration φ̃d6
λ admits a section

whose image is ∆d6
5 :

Proposition 7.7. Let λ ∈ C×. Then the Mordell-Weil group MW(φ̃d6
λ ) is

given by Table IV.

Proof. In all cases, the rank of the Mordell-Weil group is equal to 0. The
torsion is given by [25]. □

We summarize all the datas collected in this section and the previous one
in Table IV. Observe that in all the cases except when the Mordell-Weil group
has torsion, the Picard group of the K3 surface is U ⊕D (where D is the direct
sum of the Dynkin diagrams of the singular fibers), i.e., in the generic case is
U + D7 + 3A2 + 3A1. In the case when the Mordell-Weil group is Z/2Z then
one has to add the 2-torsion section to get the whole Picard group.

7.4. Three particular cases

We study here the cases, where λ ∈ {−8/17, 1, −1/2}, which are all partic-
ular in their own way.
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7.4.1. The case λ = −8/17. We assume here, and only here, that λ =
−8/17. As shown in Proposition 7.6, the elliptic fibration φd6

−8/17 of the K3
surface X31

−8/17 has the property that ∆λ contains a singular point of X31
−8/17

different from d6 and the corresponding singular fiber E−8/17 is of type Ã4.
This has the following consequence for its Picard number, which makes X̃31

−8/17
a special member of the family obtained from minimal resolutions of quotients
by G′

31 of the smooth family of icosics (Z (f3,λ))λ∈C×\{λ145,λ245,λ1,λ2,λ3}:

Proposition 7.8. ρ(X̃31
−8/17) = 19.

Proof. For proving that ρ(X31
−8/17) ⩾ 19, we shall use the elliptic fibration φ̃d6

λ .
Indeed, this fibration admits a section, so ρ(X31

−8/17) ⩾ 2 + m′, where m′ is the
rank of the subgroup of Pic(X31

−8/17) generated by irreducible components of
the singular fibers (here, 2 comes from the section and a general smooth fiber
of φ̃d6

λ ). It follows from Table IV that m′ = 17, so
ρ(X̃31

−8/17) ⩾ 19.

Now, proving that ρ(X̃31
−8/17) = 19 is done as in the proof of Corollary 6.16,

thanks to Magma computations and the Artin-Tate Conjecture. □

7.4.2. The case λ = λ1 = 1. We assume here, and only here, that λ =
λ1 = 1. We set

q1 = z1z2 − 1/108 z2
2 + 1/54 z2z4 − 1/108 z2

4

and c1 = z2
1z2 − 54 z1z2

2 + 1/8 z2
1z4 − 9 z1z2z4 − 1/4 z1z2

4 + 1/8 z3
4 .

Then q1 and c1 are irreducible and
r1 = −864q1c1.

So, if we denote by Q1 = Z (q1) and C1 = Z (c1), then Q1 is a smooth conic
while C1 is a cuspidal cubic. Then
(7.9) R1 = B̄2 ∪ Q1 ∪ C1.

The singular points of R1 are given by
d6 = [1 : 0 : 0], a3 = [1 : 0 : 1], a5 = [1 : 3 : 21], a2 = [1 : 1/27 : −1/3],
a+

1 = [1 : 231
√

33+1327
2 , 165

√
33+949
2 ] and a−

1 = [1 : −231
√

33+1327
2 , −165

√
33+949

2 ].
It is easily checked that

d6 ∈ B̄2 ∩ Q1 ∩ C1, a3 ∈ (B̄2 ∩ C1) \ Q1,

a2 ∈ C1 \ (B̄2 ∪ Q1), a5, a±
1 ∈ (Q1 ∩ C1) \ B̄2.

We denote by Q′
1 the preimage of Q1 in X31

1 , endowed with its reduced structure
(so that Q′

1 ≃ Q1) and we denote by Q̃′
1 the strict transform of Q′

1 in X̃31
1 .

Since Q′
1 is a smooth rational curve, we get that

(7.10) Q̃′
1 ≃ Q′

1 ≃ Q1.
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Since the smooth conic Q1 goes through the point d6, we get that Q̃′
1 is a

section of the elliptic fibration φ̃d6
1 . By Table IV, we get:

Proposition 7.11. The smooth rational curve Q̃′
1 is a section of the elliptic

fibration φ̃d6
1 . It is 2-torsion and generates the Mordell-Weil group MW(φ̃d6

1 ).

7.4.3. The case λ = λ3 = −1/2. We assume here, and only here, that
λ = −1/2. We set

r◦
−1/2 = 27 z3

1z2 + 947/16 z2
1z2

2 + 54 z1z3
2 − 113/2 z2

1z2z4

− 171/2 z1z2
2z4 − z2

1z2
4 + 59/2 z1z2z2

4 + 2 z1z3
4 + z2z3

4 − z4
4 .

Then r◦
−1/2 is irreducible and

(7.12) r−1/2 = (z2 − z4)r◦
−1/2.

Let L denote the line in P2(C) defined by Z (z2 −z4) and let R◦
−1/2 = Z (r◦

−1/2)
⊂ R−1/2. Then

(7.13) R−1/2 = B̄2 ∪ L ∪ R◦
−1/2.

The singular points of R−1/2 are

d6 = [1 : 0 : 0], a3 = [1 : 0 : 1], aL
3 = [0 : 1 : 1],

a+
2 = [1 : 52

√
13−184
27 : 13

√
13−37
6 ], a−

2 = [1 : −52
√

13−184
27 : −13

√
13−37

6 ].

aL
1 = [1 : −16 : −16] and a1 = [1 : 1/32 : 7/8],

With this notation, d6 is a D6 singularity, a3 and aL
3 are A3 singularities, a+

2
and a−

2 are A2 singularities and a1 and aL
1 are A1 singularities of R−1/2. Note

that, as sets,

(7.14) B̄2 ∩ L = {d6}, B̄2 ∩ R◦
−1/2 = {d6, a3} and L ∩ R◦

−1/2 = {d6, aL
3 , aL

1 }.

Let L′ denote the preimage of L in X31
−1/2 endowed with its reduced structure.

Then

L′ = {[z1 : z2 : z3 : t] ∈ P(1, 1, 1, 3) | t = z2 − z4 = 0} ≃ P1(C).

We denote by L̃′ its strict transform in X̃31
−1/2. Then (φ̃d6

−1/2)−1(φλ(a3)) con-
tains ∆d6

6 , L̃′ and the exceptional divisors above the singularities ȧL
1 and ȧL

3 :
the smooth rational curve L̃′ meets ∆d6

6 , the exceptional divisor above ȧL
1 and

at least one of the exceptional divisors above ȧL
3 , so the only possibility is that

(φ̃d6
−1/2)−1(φλ(a3)) is a singular fiber of type D̃5.
The other singular fibers are now determined easily and fit with the data in

Table IV. Note also that L̃′ provides another section of all the fibrations φ̃a1
−1/2,

φ̃
a±

2
−1/2 and φ̃a3

−1/2.
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Appendix. Morphisms to P1(C)
We describe here two basic constructions of morphisms to P1(C) which are

used in the body of the article for constructing elliptic fibrations on our K3
surfaces.

A. Weighted projective space

Notation. We fix two natural numbers k and l such that gcd(k, l) = 1, we
set m = k + l and we denote here by p the point [0 : 0 : 1] of P(k, l, m). It is
an Am−1-singularity of P(k, l, m). We denote by π : P̂(k, l, m) → P(k, l, m)
the minimal resolution of the singularity p.

Note that we have only resolved the singularity p, so that π−1(P(k, l, m)\{p})
may still have two singular points (above [1 : 0 : 0] and [0 : 1 : 0]). Let

φk,l : P(k, l, m) \ {p} −→ P1(C)
[x : y : z] 7−→ [xl : yk].

Then there exists a unique morphism of varieties

φ̂k,l : P̂(k, l, m) −→ P1(C)

making the diagram

(A.1)

P̂(k, l, m) \ π−1(p)

π ∼

��

� � // P̂(k, l, m)

φ̂k,l

��
P(k, l, m) \ {p}

φk,l // P1(C)

commutative.

Proof. The uniqueness is trivial, so let us prove the existence. It is sufficient
to work in the affine chart Uz = {[x : y : z] ∈ P(k, l, m) | z ̸= 0} of P(k, l, m).
We denote by Ũz its minimal resolution of singularities. Through the variables
a = xm, b = xy and c = ym (and setting z = 1), we have

Uz = {(a, b, c) ∈ A3(C) | bm = ac}

and p corresponds to the point 0 of Uz while the restriction of φk,l to Uz \ {0}
is given by

φk,l(a, b, c) =
{

[a : bk] if (a, b) ̸= (0, 0),
[bl : c] if (b, c) ̸= (0, 0).
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A model for the minimal resolution of Uz is given by5

Ũz = {((a, b, c), [u1 : u2 : · · · : um]) ∈ Uz × Pm−1(C) |
∀ 2 ⩽ j ⩽ m, auj = bj−1uj−1,
∀ 1 ⩽ j ⩽ m − 1, cuj = bm−juj+1,

∀ 1 ⩽ j < j′ ⩽ m, ujuj′ = bj′−j−1uj+1uj′−1

 .

Note that the last equation is automatically fulfilled if j′ = j + 1.
We then define φ̂k,l : Ũz −→ P1(C) by

φ̂k,l((a, b, c), [u1 :u2 : · · · :um])(A.2)

=
{

[uj :bk−juj+1] if uj ̸= 0 and j ⩽ k,
[bj−1−kuj−1 :uj ] if uj ̸= 0 and j ⩾ k + 1.

An immediate computation from the equations of Uz shows that φ̂k,l is well-
defined and satisfies the required property. □

Let ∆1, . . . , ∆m−1 be the smooth projective lines in the exceptional divisor
π−1(p) and we assume that they are numbered so that, in the open subset Ũz

described in the proof of (A.1),

∆j = {0}×{[u1 : · · · : um] ∈ Pm−1(C) | ∀ r ∈ {1, 2, . . . , m}\{j, j +1}, ur = 0}.

Let

∆x = {[x : y : z] ∈ P(k, l, m) | x = 0} and ∆y = {[x : y : z] ∈ P(k, l, m) | y = 0}.

Then ∆x and ∆y are smooth rational curves and ∆x ∩ ∆y = {p}. Let ∆̃x and
∆̃y denote the respective strict transforms of ∆x and ∆y in P̂(k, l, m).

Proposition A.3. The fiber φ̂−1
k,l ([1 : 0]) (resp. φ̂−1

k,l ([0 : 1])) is the union of
the smooth rational curves ∆̃y, ∆1, . . . , ∆k−1 (resp. ∆k+1, . . . , ∆m−1, ∆̃x). The
intersection graphs are given respectively by

i∆̃y i∆1 i∆k−1
· · ·

and i∆k+1 i∆m−1 i∆̃x

· · ·

Proof. One only needs to determine the intersections of the fibers φ̂−1
k,l ([1 : 0])

and φ̂−1
k,l ([0 : 1]) with the open set Ũz of P̂(k, l, m). But this can be done from

the explicit model and formula (A.2) given in the proof of (A.1). □

5For 0 ⩽ j ⩽ m − 1, let Jj denote the ideal of the algebra C[Uz ] = C[A, B, C]/⟨Bm −
AC⟩ generated by A and Bj . Then Ũz is the blowing-up of J0J1 · · · Jm−1 =
⟨(Am−jBj(j−1)/2)1 ⩽ j ⩽ m⟩: the variable uj corresponds to the generator Am−jBj(j−1)/2.
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Remark A.4. It follows from (A.2) that the restriction of φ̂k,l to the smooth ra-
tional curve ∆k is an isomorphism: this provides a section P1(C) −→ P̂(k, l, m)
to the morphism φ̂k,l : P̂(k, l, m) −→ P1(C).

Remark A.5. Let p ∈ P1(C)\{[1 : 0], [0 : 1]}. Then φ−1
k,l (p) is a smooth rational

curve. Indeed, write p = [1 : α] with α ̸= 0 (and assume that k ⩽ l, the other
case being similar). Then

φ−1
k,l (p) = {[x : y : z] ∈ P(k, l, m) | yk = αxl}.

Working first in the affine chart Uz, we get

φ−1
k,l (p) ∩ Uz = {(a, b, c) ∈ A3(C) | bm = ac, c = αbl and a = α−1bk} ≃ A1(C).

Working now in the affine chart Ux = {[x : y : z] ∈ P(k, l, m) | x ̸= 0}, we have

Ux = {(u0, u1, . . . , uk) ∈ Ak+1(C) | ∀1 ⩽ j ⩽ j′ ⩽ k, vjvj′ = vj−1vj′+1}

(here, the variable vj stands for yjzk−j). Therefore,

φ−1
k,l (p) ∩ Ux = {(u0, u1, . . . , uk) ∈ Ux | u0 = α} ≃ A1(C),

the isomorphism A1(C) ∼→ φ−1
k,l (p)∩Ux being given by u 7→ α(1, u, u2, . . . , uk−1).

Since φ−1
k,l (p) is contained in Ux ∪ Uz, we conclude that φ−1

k,l (p) is a smooth
rational curve.

B. Double cover of P2(C)

Hypothesis and notation. We fix a non-zero natural number m and a
square-free homogeneous polynomial F ∈ C[a, b, c] of degree 2m, where a, b
and c are of degree 1. We denote by X the surface

X = {[a : b : c : t] ∈ P(1, 1, 1, m) | t2 = F (a, b, c)}
and by ξ : X → P2(C), [a : b : c : t] 7→ [a : b : c]. Let σ denote the involutive
automorphism of P(1, 1, 1, m) defined by σ([a : b : c : t]) = [a : b : c : −t].

Then σ stabilizes X and ξ is the double cover of P2(C) associated with σ.
We denote by R ⊂ P2(C) its branch locus

R = {[a : b : c] ∈ P2(C) | F (a, b, c) = 0}.

If x = [a : b : c] ∈ R, we denote by ẋ = [a : b : c : 0] its unique preimage in
X . We also define px : P2(C) \ {x} −→ P1(C) to be the projection from x and
let βx : P̂2

x(C) −→ P2(C) denote the blow-up of P2(C) at x. Then the map
px ◦ βx : P̂2

x(C) \ β−1
x (x) −→ P1(C) extends uniquely to a morphism

p̂x : P̂2
x(C) −→ P1(C),

which admits a section ŝx : P1(C) −→ P̂2
x(C) whose image is β−1

x (x) ≃ P1(C).
Finally, we denote by πx : X̂x −→ X the blow-up of X at ẋ.
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Proposition B.1. Assume that x is a singular point of the branch locus R.
Then the morphism ξ : X −→ P2(C) lifts uniquely to a morphism ξ̂x : X̂x −→
P̂2

x(C) making the diagram

X̂x

ξ̂x //

πx

��

P̂2
x(C)

βx

��
X

ξ // P2(C)

commutative.

Remark B.2. The reader can easily check that, if x is not a singular point of
R, then the conclusion of Proposition B.1 fails.

Proof. The uniqueness is clear, so we only need to show the existence. By a
linear change on the coordinates a, b, c, we may assume that x = [0 : 0 : 1]. It
is sufficient to work in the open subsets U and U of X and P2(C) defined by
c ̸= 0 (and we denote by Ûx and Ûx their respective blow-up at ẋ and x). We
set Fc(a, b) = F (a, b, 1). Then, since x is a singular point of R, this means that
Fc(0, 0) = 0 and that the homogeneous component of degree 1 of Fc is zero.
We can then write uniquely

Fc(a, b) = a2λ(a, b) + abµ(b) + b2ν(b)
with λ ∈ C[a, b] and µ, ν ∈ C[b]. Therefore:

Ûx = {((a, b, t), [A : B : T ]) ∈ A3(C) × P2(C) | (a, b, t) ∈ [A : B : T ]
and T 2 = A2λ(a, b) + ABµ(b) + B2ν(b)}

and
Ûx = {((a, b), [A : B]) ∈ A2(C) × P1(C) | (a, b) ∈ [A : B]}.

Then the map ξ̂x : Ûx −→ Ûx defined by

ξ̂x((a, b, t), [A : B : T ]) = ((a, b), [A : B])
is well-defined and satisfies the requirements of the proposition. □

Proposition B.1 allows to define a morphism

φ̂x = p̂x ◦ ξ̂x : X̂x −→ P1(C).
We now investigate the question of sections of this morphism, whenever x is
an ADE singularity of the branch locus R (by [5, Proposition 4.4], this implies
that ẋ is a simple singularity of the surface X of the same type as x). First,
note that, if sx : P1(C) −→ X̂x is a section of φ̂x, then ξ̂x ◦ sx is a section
of p̂x. Therefore, the question amounts to study sections of the morphism
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ξ̂x : π−1
x (ẋ) −→ β−1

x (x) ≃ P1(C). Here, we endow π−1
x (ẋ) with its reduced

structure. A first answer is given in the next proposition:

Proposition B.3. Let x be an ADE singularity of R. Then:
(a) If x is an A1 singularity, then π−1

x (ẋ) ≃ P1(C) and the morphism
ξ̂x : π−1

x (ẋ) −→ β−1
x (x) is a double cover admitting no section.

(b) If x is an Am singularity with m ⩾ 2, then π−1
x (ẋ) is the union of

two smooth rational curves (≃ P1(C)) intersecting transversally at one
point, and both smooth rational curves map isomorphically to β−1

x (x).
This gives two sections of ξ̂x, each one being obtained from the other
by composing with the involution σ.

(c) If x is a DE singularity, then π−1
x (ẋ) ≃ P1(C) mapping isomorphically

on β−1
x (x). This gives one section of ξ̂x.

Proof. As in the proof of the previous Proposition B.1, we may assume that
x = [0 : 0 : 1] and we keep the notation introduced in this above proof. In
particular,

π−1
x (ẋ) ≃ {[A : B : T ] ∈ P2(C) | T 2 = α(0, 0)A2 + β(0)AB + γ(0)B2}

and ξ̂x([A : B : T ]) = [A : B]. Let us examine the different cases.
(a) If x is an A1 singularity, then a linear change of coordinates in a, b allows

to assume that α(0, 0) = γ(0) = 0 and β(0) = 1. Then

π−1
x (ẋ) ≃ {[A : B : T ] ∈ P2(C) | T 2 = AB}

and the result follows.
(b) If x is an Am singularity with m ⩾ 2, then a linear change of coordinates

in a, b allows to assume that α(0, 0) = 1 and β(0) = γ(0) = 0. Then

π−1
x (ẋ) ≃ {[A : B : T ] ∈ P2(C) | T 2 = A2} = ∆+ ∪ ∆−,

where ∆± = {[A : B : T ] ∈ P2(C) | A = ±T}. The result follows.
(c) If x is a DE singularity, then α(0, 0) = β(0) = γ(0) = 0, so

π−1
x (ẋ) ≃ {[A : B : T ] ∈ P2(C) | T = 0} ≃ P1(C),

so the result follows. □

Let us go on with the case where x is an ADE singularity of R. We denote by
π̃x : X̃x −→ X the resolution of X only at the point ẋ. It factorizes through
X̃x −→ X̂x −→ X . Let m denote the Milnor number of ẋ. Then π̃−1

x (ẋ) is the
union of m smooth rational curves whose intersection graph is denoted by Γx.
If x is not of type A1, we denote by Γ#

x the graph obtained from Γx by removing
the smooth rational curves which are mapped isomorphically to P1(C) under
φ̂x. According to the discussion of Proposition B.3, easy computations give the
following consequences about the behaviour of φ̂x and the action of σ on the
corresponding intersection graph (here, type D2 means type A1 × A1 and type
D3 coincides with type A3):



742 C. BONNAFÉ AND A. SARTI

Corollary B.4. All the smooth rational curves belonging to the same connected
component of Γ#

x are mapped to the same point of P1(C) under φ̂x. If two
smooth rational curves do Γ#

x do not belong to the same connected component,
then they are mapped to different points of P1(C) under φ̂x. Moreover:

(a) If x is an A1 singularity, then φ̂x : ∆x
1 → P1(C) is a double cover

corresponding to the quotient by the action of σ.
(b) If x is an Am singularity with m ⩾ 2, then Γ#

x is of type Am−2 and σ
acts on Γx by the unique non-trivial involutive automorphism.

(c) If x is a Dm singularity with m ⩾ 4, then Γ#
x is of type Dm−2 × A1.

Moreover, σ acts on the intersection graph as the identity if m is even
and as the unique non-trivial involutive automorphism if m is odd.

(d) If x is an E6 singularity, then Γ#
x is of type A5 and σ acts on Γx as

the unique non-trivial involutive automorphism.
(e) If x is an E7 (resp. E8) singularity, then Γ#

x is of type D6 (resp. E7)
and σ acts on Γx as the identity.
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