DOI QR코드

DOI QR Code

Pre-service Elementary Teachers' Orientation toward Scientific Inquiry Teaching: Focusing on the Anomalous Situation

초등 예비교사의 과학 탐구 교수 지향 - 과학 실험 결과 불일치 상황을 중심으로 -

  • Received : 2023.02.03
  • Accepted : 2023.03.06
  • Published : 2023.05.31

Abstract

In this study, the orientation toward scientific inquiry teaching was classified into five categories, namely, 'concept understanding', 'activity driven', 'process skills', 'scientific practice', and 'engineering practice', and the orientation toward scientific inquiry teaching of pre-service elementary teachers was investigated through individual in-depth interviews. We aimed to investigate the context dependence of scientific inquiry teaching orientation by comparing general questions with specific class situations where experimental results are different from expectations. We found that 'scientific practice' orientation was more common in the general situation, whereas 'concept understanding' orientation was more common in the specific class situation. In addition, in general and specific class situations, the orientation was often inconsistent. Even in a specific class situation, the orientation toward scientific inquiry teaching was different according to the situations. When the experimental results were all different from expected (when no condensation occurred), 'concept understanding' orientation was more common; however, when the results were different among students groups (condensation only occurred in some groups), 'scientific practice' orientation was more common. In other words, the results showed that the orientation toward scientific inquiry teaching of pre-service elementary teachers is not single, has complex properties, and is strongly context-dependent. The implications of these research results on teacher education were discussed.

이 연구에서는 과학 탐구 교수 지향을 '개념 이해', '활동', '과정기능', '과학적 실천', '공학적 실천'의 5가지로 구분하고 초등 예비교사가 가진 일반적, 맥락적 과학 탐구 교수 지향을 개별 심층 면담을 통해 알아보았다. 초등 예비교사의 일반적인 과학 탐구 교수 지향은 어떠한지 일반적인 상황의 질문을 통해 알아보고, 구체적으로 실험 결과가 예상과 다른 불일치 상황(anomalous situation)에서 다시 이들의 교수 지향을 조사하여 과학 탐구 교수 지향의 맥락 의존성을 탐색하고자 하였다. 연구 결과, 일반적인 상황에서는 '과학적 실천' 교수 지향이 많이 나타났으며, 구체적인 수업 상황인 불일치 상황에서는 '개념 이해' 교수 지향이 많이 나타났다. 또 일반적인 상황과 구체적인 상황에서 과학 탐구 교수 지향은 일관적이지 않은 경우가 많았다. 구체적인 수업 상황인 불일치 상황에서도 전체적으로 실험 결과가 예상과 다르게 나오는 경우(응결이 전혀 일어나지 않은 경우)와 모둠별로 실험 결과가 일치하지 않는 경우(일부 모둠에서만 응결이 일어난 경우), 과학 탐구 교수 지향은 다른 패턴으로 나타났다. 전체적으로 불일치 상황이 발생하는 경우는 '개념 이해' 교수 지향이 더 많이 나타났고, 모둠별로 결과가 다르며 일부 모둠에서만 불일치 상황이 발생하는 경우는 '과학적 실천' 교수 지향이 좀 더 많이 나타났다. 즉, 초등 예비교사의 과학 탐구 교수 지향은 복합적인 성격을 가지며 상황 의존적 성격이 강하다고 할 수 있다. 이러한 연구결과가 교사교육에 주는 시사점을 논의하였다.

Keywords

Acknowledgement

이 논문은 2019년 대한민국 교육부와 한국연구재단의 인문사회분야 중견연구자지원사업의 지원을 받아 수행된 연구임(NRF-2019S1A5A2A01036864).

References

  1. 방은정, 백성혜(2010). 중학교 과학 교사의 교수 지향과 이에 영향을 미치는 요인 분석. 한국과학교육학회지, 30(6), 719-738. https://doi.org/10.14697/JKASE.2010.30.6.719
  2. 안영돈, 임희준(2014). 초등 교사의 과학 학습에 대한 신념과 수업 내용, 방법, 환경 측면에서의 교수 실제에 관한 사례 연구. 과학교육연구지, 38(3), 555-568. https://doi.org/10.21796/JSE.2014.38.3.555
  3. 양일호, 한기갑, 최현동, 오창호, 조현준(2005). 초등 초임교사의 과학의 본성에 대한 신념과 과학 교수-학습 활동과의 관련성. 초등과학교육, 24(4), 399-416.
  4. 양정은, 최애란(2020). 중학교 과학 교사의 과학 탐구 교수 지향. 대한화학회지, 64(4). 210-224. https://doi.org/10.5012/JKCS.2020.64.4.210
  5. 윤혜경(2004). 초등 예비교사들이 과학 수업에서 겪는 어려움. 초등과학교육, 23(1), 74-84.
  6. 윤혜경(2008). 과학 실험 실습 교육에서 초등 교사가 느끼는 딜레마. 초등과학교육, 27(2), 102-116.
  7. 윤혜경, 강남화, 김병석(2015). 예비 과학교사의 과학, 과학학습, 과학 교수에 대한 인식론적 신념: 인식론적 신념의 맥락 의존성. 한국과학교육학회지, 35(1), 15-25. https://doi.org/10.14697/JKASE.2015.35.1.0015
  8. 정득실, 김찬종, 이선경, 오필석(2007). 구성주의적 수업을 위한 워크숍에 참여한 중등 과학 교사의 교수 지향과 수업 실행. 한국과학교육학회지, 27(5), 432-446.
  9. 정원우(1998). 고등학교 지구과학 실험 실습 교육에 대한 조사분석. 한국지구과학회지, 19(5), 439-448.
  10. 조은진(2020). 과학교사의 '과학의 본성' 교수 의지 사례 연구: 지식과 신념의 상호작용 탐색. 학습자중심교과교육연구, 20(5), 21-50.
  11. 팽애진, 백성혜(2005). 과학 실험 수업에 대한 중등 과학 교사의 신념 사례 연구. 한국과학교육학회지, 25(2), 146-161.
  12. 한수진, 이인혜, 강석진, 노태희(2011). 위기 상황에의 대처 전략을 통한 초등교사들의 과학에 대한 인식론적 신념 연구. 초등과학교육, 30(1), 61-70.
  13. Abd-El-Khalick, F., & Lederman, N. G. (2000). Improving science teachers' conceptions of nature of science: A critical review of the literature. International Journal of Science Education, 22(7), 665-701.
  14. Abd-El-Khalick, F., Boujaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., ... & Tuan, H. L. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397-419.
  15. Adey, P., & Shayer, M. (1993). An exploration of long-term far-transfer effects following an extended intervention programme in the high school science curriculum. Cognition and Instruction, 11(1), 1-29. https://doi.org/10.1207/s1532690xci1101_1
  16. Ajzen, I., & Fishbein, M. (1980). Understanding attitude and predicting social behavior. Englewood Cliffs.
  17. Anderson, C. W., & Smith, E. L. (1987). Teaching science. In V. Richardson-Koehler (Ed.), Educators' handbook: A research perspective (pp. 84-111). Longman.
  18. Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry. Journal of Science Teacher Education, 13(1), 1-12. https://doi.org/10.1023/A:1015171124982
  19. Ball, D. L., & Bass, H. (2002, May). Toward a practice-based theory of mathematical knowledge for teaching. Proceedings of the 2002 annual meeting of the Canadian Mathematics Education Study Group (pp. 3-14). Edmonton Alberta.
  20. Bartos, S. A., & Lederman, N. G. (2014). Teachers' knowledge structures for nature of science and scientific inquiry: Conceptions and classroom practice. Journal of Research in Science Teaching, 51(9), 1150-1184. https://doi.org/10.1002/tea.21168
  21. Brickhouse, N. W. (1990). Teachers' beliefs about the nature of science and their relationship to classroom practice. Journal of Teacher Education, 41(3), 53-62. https://doi.org/10.1177/002248719004100307
  22. Cochran-Smith, M., & Lytle, S. L. (1999). Relationships of knowledge and practice: Teacher learning in communities. Review of Research in Education, 24(1), 249-305.
  23. Crawford, B. (2007). Learning to teach science as inquiry in the rough and tumble of practice. Journal of Research in Science Teaching, 44(4), 613-642. https://doi.org/10.1002/tea.20157
  24. Driver, R. (1983). The Pupil as Scientist. Open University Press.
  25. Eick, C. J., & Reed, C. J. (2002). What makes an inquiry-oriented science teacher? The influence of learning histories on student teacher role identity and practice. Science Education, 86(3), 401-416. https://doi.org/10.1002/sce.10020
  26. Ernest, P. (1989). The knowledge, beliefs and attitudes of the mathematics teacher: A model. Journal of Education for Teaching, 15(1), 13-33. https://doi.org/10.1080/0260747890150102
  27. Forzani, F. M. (2014). Understanding "core practices" and "practice-based" teacher education: Learning from the past. Journal of Teacher Education, 65(4), 357-368. https://doi.org/10.1177/0022487114533800
  28. Friedrichsen, P., & Dana, T. (2005). A substantive-level theory of highly-regarded secondary biology teachers' science teaching orientations. Journal of Research in Science Teaching, 42(2), 218-244. https://doi.org/10.1002/tea.20046
  29. Gess-Newsome, J. (2015). A Model of Teacher Professional Knowledge and Skill including PCK: Results of the Thinking from the PCK Summit. In A. Berry, P. M. Friedrichsen, & J. Loughran (Eds.), Re-Examining Pedagogical Content Knowledge in Science Education (pp. 14-27). Routledge.
  30. Gess-Newsome, J., & Carlson, J. (2013, September). The PCK summit consensus model and definition of pedagogical content knowledge. In J. Gess-Newsome (Chair), Symposium. The European Science Education Research Association (ESERA) Conference, Nicosia, Cyprus.
  31. Gess-Newsome, J., Taylor, J. A., Carlson, J., Gardner, A. L., Wilson, C. D., & Stuhlsatz, M. A. (2017). Teacher pedagogical content knowledge, practice, and student achievement. International Journal of Science Education, 39(1), 1-20. https://doi.org/10.1080/09500693.2016.1262084
  32. Grossman, P. L. (1990). The making of a teacher: Teacher knowledge and teacher education. New York, NY: Teachers College Press.
  33. Helms, J., & Stokes, L. (2013). A Meeting of Minds around Pedagogical Content Knowledge: Designing an International PCK Summit for Professional, Community, and Field Development. Inverness Research. (PCK Summit Report). Retrieved from http://www.inverness-research.org/reports/2013-05_RptPCK-Summit-Eval-final_03-2013.pdf
  34. Hofer, B. K., & Pintrich, P. R. (2002). Personal epistemology: The psychology of beliefs about knowledge and knowing. Lawrence Erlbaum Associates.
  35. Jones, M. G., & Carter, G. (2007). Science teacher attitudes and beliefs. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (Vol. 1, pp. 1067-1104). Routledge.
  36. Kang, N. H. (2008). Learning to teach science: Personal epistemologies, teaching goals, and practices of teaching. Teaching and Teacher Education, 24(2), 478-498. https://doi.org/10.1016/j.tate.2007.01.002
  37. Kind, V. (2016). Preservice science teachers' science teaching orientations and beliefs about science. Science Education, 100(1), 122-152. https://doi.org/10.1002/sce.21194
  38. Leach, J., Millar, R., Ryder, J., & Sere, M. G. (2000). Epistemological understanding in science learning: The consistency of representations across contexts. Learning and Instruction, 10(6), 497-527. https://doi.org/10.1016/S0959-4752(00)00013-X
  39. Levin, B. (2004). Reforming education: From origins to outcomes. Routledge.
  40. Lucero, M., Valcke, M., & Schellens, T. (2013). Teachers' beliefs and self-reported use of inquiry in science education in public primary schools. International Journal of Science Education, 35(8), 1407-1423. https://doi.org/10.1080/09500693.2012.704430
  41. Magnusson, S., Krajcik, J., & Borko, H. (1999). Examining pedagogical content knowledge: The construct and its implications for science education. Springer.
  42. Melville, W., Fazio, X., Bartley, A., & Jones, D. (2008). Experience and reflection: Preservice science teachers' capacity for teaching inquiry. Journal of Science Teacher Education, 19(5), 477-494.
  43. National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and learning. National Academies Press.
  44. Nott, M., & Wellington, J. (1998). Eliciting, interpreting and developing teachers' understandings of the nature of science. Science & Education, 7(6), 579-594. https://doi.org/10.1023/A:1008631328479
  45. Pajares, M. F. (1992). Teachers' beliefs and educational research: Cleaning up a messy construct. Review of Educational Research, 62(3), 307-332. https://doi.org/10.3102/00346543062003307
  46. Park, S., & Chen, Y. (2012). Mapping out the integration of the components of pedagogical content knowledge (PCK): Examples from high school biology classrooms. Journal of Research in Science Teaching, 49(7), 922-941. https://doi.org/10.1002/tea.21022
  47. Richardson, V. (1996). The role of attitudes and beliefs in learning to teach. In J. Sikula (Ed.), Handbook of research on teacher education (2nd ed., pp. 102-119). New York: Macmillan.
  48. Roehrig, G. H., & Luft, J. A. (2004). Constraints experienced by beginning secondary science teachers in implementing scientific inquiry lessons. International Journal of Science Education, 26(1), 3-24.
  49. Ryan, G. W., & Bernard, H. R. (2000). Data management and analysis methods. Handbook of Qualitative Research, 2(1), 769-802.
  50. Schwab, J. J. (1962). The teaching of science as enquiry. In J. J. Schwab & P. F. Brandwein (Eds.), The teaching of science (pp. 3-103). Simon and Schuster.
  51. Wallace, C. S., & Kang, N. H. (2004). An investigation of experienced secondary science teachers' beliefs about inquiry: An examination of competing belief sets. Journal of Research in Science Teaching, 41(9), 936-960. https://doi.org/10.1002/tea.20032
  52. White, C. S. (1982). A validation study of the Barth-Shermis social studies preference scale. Theory and Research in Social Education, 10(2), 1-20. https://doi.org/10.1080/00933104.1982.10505421