DOI QR코드

DOI QR Code

A REMARK ON STATISTICAL MANIFOLDS WITH TORSION

  • Hwajeong Kim (Department of Mathematics, Hannam University)
  • Received : 2023.03.21
  • Accepted : 2023.06.01
  • Published : 2023.06.30

Abstract

Consider a Riemannian manifold M equipped with a metric g. In this article, we study a notion for statistical manifolds (M, g, ∇), which can have a nonzero torsion, abbreviated to SMT. Then it turns out that the tensor fields ∇g and ${\tilde{\nabla}}g$ obtained from two different SMT-connections are different.

Keywords

References

  1. S. Amari, Information Geometry and Its Applications, Applied Mathematical Sciences. Springer Japan (2016). 
  2. A.M.Blaga, A. Nannicini, Conformal-projective transformations on statistical and semi-Weyl manifolds with torsion, arXiv.2209.00689vl, (2022). 
  3. O.Calin, C. Udriste, Geometric Modeling in Probability and Statistics, Springer (2013). 
  4. E. Cartan, Sur les varietes a connexion affine et la theorie de la relativite generalisee, Ann. Ec. Norm. Sup. 42 (1925), 17-88, English transl. by Magnon and A. Ashtekar, On manifolds with an affine conneciton and the theory of general relativity, Napoli: Bibliopolis (1986).  https://doi.org/10.24033/asens.761
  5. H. Kim, A note on statistical manifolds with torsion, Communi. Korean Math. Soc. 38 (2023), No. 2, 621-628. 
  6. T. Kurose, Statistical manifolds admitting torsion. Geometry and Something. (2007), in Japanese. 
  7. S. L. Lauritzen, Statistical manifolds, Differential Geometry in statistical inference, 10 (1987), 163-216.  https://doi.org/10.1214/lnms/1215467061
  8. H. Matsuzoe, Statistical manifolds and affine differential geometry, Advanced Studies in Pure Mathematics 57, Probabilistic Approach to Geometry (2010), 303-321. 
  9. H. Nagaoka, S. Amari, Differential geometry of smooth families of probability distributions, Technical Report (METR) 82-7, Dept. of Math. Eng. and Instr. Phys., Univ. of Tokyo, (1982) 
  10. A. P. Norden, On pairs of conjugate parallel displacements in multidimensional spaces, In Doklady Akademii nauk SSSR, volume 49 (1945), 1345-1347. 
  11. U. Simon, in Affine Differential Geometry, Handbook of Differential Geometry, vol. I (ed. by F. Dillen, L. Verstraelen), Elsevier Science, Amaterdam (2000) , 905-961.