DOI QR코드

DOI QR Code

STS304L 및 STS316L 용접부의 응력 부식 균열 개선을 위한 저온 분사 코팅의 잔류 응력 감소 효과에 대한 연구

A Study on Residual Stress Reduction Effect of Cold Spray Coating to Improve Stress Corrosion Cracking of Stainless Steel 304L and 316L Welds

  • 박광용 (두산에너빌리티) ;
  • 심덕남 (두산에너빌리티) ;
  • 하종문 (두산에너빌리티) ;
  • 이상동 (두산에너빌리티) ;
  • 조성우 (두산에너빌리티)
  • Kwang Yong Park ;
  • Deog Nam Shim ;
  • Jong Moon Ha ;
  • Sang Dong Lee ;
  • Sung Woo Cho
  • 투고 : 2023.11.07
  • 심사 : 2023.12.22
  • 발행 : 2023.12.30

초록

A Chloride-induced stress corrosion cracking (CISCC) of austenite stainless steel in dry cask storage system (DCSS) can occur with extending service time than originally designed. Cold spray coating (CSC) not only form a very dense microstructure that can protect from corrosive environments, but also can generate compressive stress on the surface. This characteristic of CSC process is very helpful to increase the resistance for CISCC. CSC with several powders, such as 304L, 316L and Ni can be optimized to form very dense coating layer. In addition, the impact energy generated as the CSC powder collides with the surface of base metal at a speed of Mach 2 or more can remove the residual tensile stress of welding area and serve the compress stress. CSC layers include no oxidation and no contamination with under 0.2% porosity, which is enough to protect from the penetration of corrosive chloride. Therefore, the CSC coating layer can be accompanied by a function that can be disconnected from the corrosive environment and an effect of improving the residual stress that causes CISCC, so the canister's CISCC resistance can be increased.

키워드

과제정보

이 논문은 2019년도 정부(과학기술정보통신부)의 재원으로 한국연구재단 원자력기초연구지원사업의 지원을 받아 수행된 연구임(No. 1711097219)

참고문헌

  1. Waste Comprehensive Information Database, WACID, http://wacid.kins.re.kr.
  2. Korea Radioactive Waste Agency, www.korad.or.kr.
  3. B. D. Hanson, 2019, "Gap Analysis to Support Extended Storage and Transportation of Spent Nuclear Fuel: Five-Year Delta Report", US Department of Energy Spent Fuel and Waste Science and Technology
  4. D.G. Enos and C.R. Bryan, 2016, "Final Report: Characterization of Canister Mockup Weld Residual Stresses", U.S. Department of Energy, Sandia National Laboratories, SAND2016-12375R.
  5. B. Sutton, K. Ross, G. Grant, G. Cannell, G. Frederick and R. Couch, "Friction stir processing of degraded austenitic stainless steel nuclear fuel dry cask storage system canisters", Miner. Met. Mater. Soc., pp. 343-351.
  6. K. Ross, B. Sutton, G. Grant, G. Cannell, G. Frederick and R. Couch, 2017, "Development of friction stir processing for repair of nuclear dry cask storage system canisters", Miner. Met. Mater. Soc., pp. 39-46.
  7. N. Klymyshyn, N. Karri, H. Adkins and B. Hanson, 2013, "Structural Sensitivity of Dry Storage Canisters, U.S. Department of Energy", Pacific Northwest National Laboratory, PNNL22814.
  8. Y. Sano, M. Obata, T. Kubo, N. Mukai, M. Yoda, K. Masaki and Y. Ochi, 2006, "Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating", Mater. Sci. Eng. Vol. 417, No. 1-2, pp. 334-340.
  9. P. Peyre, X. Scherpereel, L. Berthe, C. Carboni, R. Fabbro and G. Be, 2000, "Surface modifications induced in 316L steel by laser peening and shot-peening . Influence on pitting corrosion resistance", Mater. Sci. Eng., Vol. 280, pp. 294-302.
  10. J.Z. Lu, K.Y. Luo, D.K. Yang, X.N. Cheng, J.L. Hu, F.Z. Dai, H. Qi, L. Zhang, J.S. Zhong, Q.W. Wang and Y.K. Zhang, 2012, "Effects of laser peening on stress corrosion cracking (SCC) of ANSI 304 austenitic stainless steel", Corrosion Sci., Vol. 60, pp. 145-152.
  11. S. Yin, P. Cavaliere, B. Aldwell, R. Jenkins, H. Liao, W. Li and R. Lupoi, 2018, "Cold spray additive manufacturing and repair: fundamentals and applications", Addit. Manuf., Vol. 21, pp. 628-650.
  12. A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano and M. Dao, 2014, "Cold spray coating: review of material systems and future perspectives", Surf. Eng., Vol. 30, pp. 369-395.
  13. J. Renshaw, 2019, "Presentation: dry storage canister inspection, mitigation, and repair R&D efforts", NRC REC CON Meet., Electric Power Research Institute.
  14. H.T. Wang, H.L. Yao, X.B. Bai, Q.Y. Chen, G.C. Ji and B. Jodoin, 2019, "Surface grain refinement of AZ91D magnesium alloy by cold spraying shot peening process", Surf. Coating. Technol., Vol. 374, pp. 795-801.
  15. J. Hirschbeck, 2013, "Kinetics Spray Solutions GmbH 2013".
  16. ASTM C633-13, 2017, "Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings", ASTM International,
  17. L.N. Brewer, J.F. Schiel, E.S.K. Menon and D.J. Woo, 2018, "The connections between powder variability and coating microstructures for cold spray deposition of austenitic stainless steel", Surf. Coating. Technol., Vol. 334, pp. 50-60.
  18. M. Villa, S. Dosta and J.M. Guilemany, 2013, "Optimization of 316L stainless steel coatings on light alloys using Cold Gas Spray", Surf. Coating. Technol. Vol. 235, pp. 220-225.
  19. B. Dikici, H. Yilmazer, I. Ozdemir and M. Isik, 2016, "The effect of post-heat treatment on microstructure of 316L cold-sprayed coatings and their corrosion performance", J. Therm. Spray Technol., Vol. 25, pp. 704-714.
  20. X. Jiang, N. Overman, C. Smith and K. Ross, 2020, "Microstructure, hardness and cavitation erosion resistance of different cold spray coatings on stainless steel 316 for hydropower application", Mater. Today Commun., Vol. 25, pp. 1-9.
  21. H. Yeom, T. Dabney, N. Pocquette, K. Ross, F. E. Pferkorn and K. Sridharan, 2020, "Cold spray deposition of 304L stainless steel to mitigate chloride-induced stress corrosion cracking in canisters for used nuclear fuel storage", J. Nucl. Mater., Vol. 538., pp. 1-12.