DOI QR코드

DOI QR Code

염화물 환경에서 스테인리스강 용접부의 공식저항성 향상을 위한 마찰교반공정 적용효과에 관한 연구

A study on the Application Effect of Friction Stir Processing for Enhanced Pitting Corrosion Resistance of Stainless Steel Welds in Chloride Environment

  • 하종문 (두산에너빌리티) ;
  • 심덕남 (두산에너빌리티) ;
  • 김승현 (한국재료연구원)
  • Jong Moon Ha ;
  • Deog Nam Shim ;
  • Seung Hyun Kim
  • 투고 : 2023.11.07
  • 심사 : 2023.12.15
  • 발행 : 2023.12.30

초록

As temporary storage facilities for spent nuclear fuels in domestic nuclear power plants are expected to be saturated, external intermediate storage facilities would be required in the future. Spent nuclear fuels are stored in metal canisters and then placed in a dry environment within concrete or metal casing for operation. In the United States, the dry storage method for spent nuclear fuels has been operated for an extended period. Based on the corrosion experiences of dry storage canisters in chloride environments, numerous studies have been conducted to reduce corrosion in welds. With the construction of intermediate storage facilities in Korea for spent nuclear fuels expected near coastal areas adjacent to nuclear power plants, there is a need for research on the corrosion occurrence of welds and mitigation methods for canisters in chloride environments. In this paper, we measured and compared the residual stresses in the Heat-Affected Zones (HAZ) after electron beam welding (EBW) and gas tungsten arc welding (GTAW) processes for candidate materials such as 304L, 316L, and duplex stainless steel(DSS). We investigated the possibility of microstructure control through the application of surface modification processes using friction stir processing (FSP). Corrosion tests on each welded specimen revealed a higher corrosion rate in EBW welds compared to GTAW. Furthermore, it was confirmed that corrosion resistance improved due to phase refinement and redistribution of precipitates when FSP was applied.

키워드

과제정보

본 연구는 한국연구재단이 주관하는 원자력기초연구지원사업의 건식저장용기 CISCC 저항성 향상을 위한 통합혁신기술 개발과제의 일환으로 수행되었습니다.

참고문헌

  1. Nuclear Policy Center of Seoul National University, https://atomic.snu.ac.kr/index.php
  2. Baeg, C. Y., Cho, C. H., 2018, "Development Status for Commercialization of Spent Nuclear Fuel Transportation and Dry Storage System Technology", JNFCWT, Vol. 16, No. 2, pp. 271-279, doi:https://doi.org/10.7733/jnfcwt.2018.16.2.271
  3. Shin, J. C., Yang, J. D., Sung, U. H., Ryu, S. W., Park, Y. W., 2020, "Technology Trends in Spent Nuclear Fuel Cask and Dry Storage", Trans. of the KPVP, Vol. 16, No. 1, pp. 110-116, doi:http://dx.doi.org/10.20466/KPVP.2020.16.1.110
  4. USNRC, 2014, "Assessment of Stress Corrosion Cracking Susceptibility for Austenitic Stainless Steels Exposed to Atmospheric Chloride and Non-Chloride Salts", U.S. Nuclear Regulatory Commission, Washington, DC, NUREG/CR-7170.
  5. USNRC, 2010, "Atmospheric Stress Corrosion Cracking Susceptibility of Welded and Unwelded 304, 304L, and 316L Austenitic Stainless Steels Commonly Used for Dry Cask Storage Containers Exposed to Marine Environments", U.S. Nuclear Regulatory Commission, Washington, DC, NUREG/CR-7030
  6. USNWTRB, 2017, "Chloride-Induced Stress Corrosion Cracking Potential In Dry-storage Canisters for Spent Nuclear Fuel Rev. 1A", U.S. Nuclear Waste Technical Review Board, Arlington, VA
  7. EPRI, 2006, "Effects of Marine Environments on Stress Corrosion Cracking of Austenitic Stainless Steels", Electric Power Research Institute, Palo Alto, CA, EPRI-1011820
  8. Ramesh, A., Kumar, V., Anuj, and Khanna, P., 2021, "Weldability of duplex stainless steels- A review", ICMED 2021, Hyderabad, Sep. 24-26, doi:https://doi.org/10.1051/e3sconf/202130901076
  9. Rezaei-Nejad, S. S., Abdollah-zadeh, A., Hajian, M., Kargar, G., Seraj, R., 2015, "Formation of Nanostructure in AISI 316L Austenitic Stainless Steel by Friction Stir Processing", Procedia Materials Science 11, pp. 397-402, doi:https://doi:10.1016/j.mspro.2015.11.008
  10. Chen, Y. C., Fujii, H., Tsumura, T., Kitagawa, Y., Nakata, K., Ikeuchi, K., Matsubayashi, K., Michishita, Y., Fujiya, Y., Katoh, J., 2012, "Banded structure and its distribution in friction stir processing of 316L austenitic stainless steel", J NUCL MATER, 420, pp. 497-500, doi: https://doi.org/10.1016/j.jnucmat.2011.10.053
  11. Seo, G. J., 2014, Effect of σ-phase on corrosion resistance of super duplex stainless steel weld metal, Department of Metallurgical Engineering, Graduate School of Pukyong National University, master's thesis.
  12. Cao, F., Jiang, T., Hou, W., Huang, G., Shen, Y., Ding, Y., Shu, P., 2022, "Effect of inhomogeneous fiber structure on the mechanical properties of friction stir welded SAF 2507 super duplex stainless steel", Mater Chem Phys. 283 126026, doi:https://doi.org/10.1016/j.matchemphys.2022.126026
  13. Kim, S., Kim, G., Oh, C., Song, S., 2022, "Pitting and Localized Galvanic Corrosion Characteristics of Gas Tungsten Arc Welded Austenitic Stainless Steel" MET MATER INT, Vol. 28, No. 10, pp. 2448-2461, doi:https://doi.org/10.1007/s12540-021-01149-6
  14. Sutton, B., Ross, K., Grant, G., Cannell, G., Frederick, G., Couch, R., "Friction Stir Processing of Degraded Austenitic Stainless Steel Nuclear Fuel Dry Cask Storage System Canisters", Energy Materials 2017, pp. 343-351, doi:https://doi.org/10.1007/978-3-319-52333-0_31