Acknowledgement
이 연구는 기상청<「스마트시티 기상기후 융합기술 개발」사업>(KMI2022-01910)의 지원으로 수행되었음. 또한 이 성과 는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2022R1A4A3032838). 본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지 원(주요사업)사업으로 수행되었음(과제번호 20230115-001, 디지털뉴딜 기반 통합물관리 기술 융합 플랫폼(IWRM-K) 개발).
References
- Abdelraouf, A., Abdel-Aty, M., and Wu, Y. (2022). "Using vision transformers for spatial-context-aware rain and road surface condition detection on freeways." IEEE Transactions on Intelligent Transportation Systems, Vol. 23, No. 10, pp. 18546-18556. https://doi.org/10.1109/TITS.2022.3150715
- Abraham, M.T., Satyam, N., Pradhan, B., and Alamri, A.M. (2020). "IoT-based geotechnical monitoring of unstable slopes for landslide early warning in the Darjeeling Himalayas." Sensors, Vol. 20, No. 9, 2611.
- Abudi, I., Carmi, G., and Berliner, P. (2012). "Rainfall simulator for field runoff studies." Journal of Hydrology, Vol. 454, pp. 76-81. https://doi.org/10.1016/j.jhydrol.2012.05.056
- Ajith, J.B., Manimegalai, R., and Ilayaraja, V. (2020). "An IoT based smart water quality monitoring system using cloud." In 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), IEEE, Vellore, India, pp. 1-7.
- Allamano, P., Croci, A., and Laio, F. (2015). "Toward the camera rain gauge." Water Resources Research, Vol. 51, No. 3, 1744-1757. https://doi.org/10.1002/2014WR016298
- Amale, O., and Patil, R. (2019). "IOT Based rainfall monitoring system using WSN enabled architecture." In 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, IEEE, pp. 789-791.
- Barbosa, J.H.S., Fernandes, A., Lima, A., and Assis, L. (2019). "The influence of spatial discretization on HEC-HMS modelling: A case study." International Journal of Hydrology, Vol. 3, pp. 442-449. https://doi.org/10.15406/ijh.2019.03.00209
- Byun, J., Jun, C., Kim, J., Cha, J., and Narimani, R. (2023). "Deep Learning-based Rainfall Prediction using Cloud Image Analysis." IEEE Transactions on Geoscience and Remote Sensing, Vol. 61, pp. 1-11. https://doi.org/10.1109/TGRS.2023.3263872
- Cardoso de Salis, H.H., Monteiro da Costa, A., Moreira Vianna, J. H., Azeneth Schuler, M., Kunne, A., Sanches Fernandes, L.F., and Leal Pacheco, F.A. (2019). "Hydrologic modeling for sustainable water resources management in urbanized karst areas." International Journal of Environmental Research and Public Health, Vol. 16, No. 14, 2542.
- Dawson, C.W., Abrahart, R.J., and See, L.M. (2007). "HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts." Environmental Modelling and Software, Vol. 22, No. 7, pp. 1034-1052. https://doi.org/10.1016/j.envsoft.2006.06.008
- Dong, R., Liao, J., Li, B., Zhou, H., and Crookes, D. (2017). "Measurements of rainfall rates from videos." 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), IEEE, Shanghai, China, pp. 1-9.
- Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., and Paisley, J. (2017). "Removing rain from single images via a deep detail network." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, U.S., pp. 3855-3863.
- Garg, K., and Nayar, S.K. (2004). "Detection and removal of rain from videos." Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, Washington, DC, U.S., Vol. 1, pp. I-I.
- Guo, B., Han, Q., Chen, H., Shangguan, L., Zhou, Z., and Yu, Z. (2017). "The emergence of visual crowdsensing: Challenges and opportunities." IEEE Communications Surveys and Tutorials, Vol. 19, No. 4, pp. 2526-2543. https://doi.org/10.1109/COMST.2017.2726686
- Haidar, A., and Verma, B. (2018). "Monthly rainfall forecasting using one-dimensional deep convolutional neural network." IEEE Access, Vol. 6, pp. 69053-69063. https://doi.org/10.1109/ACCESS.2018.2880044
- Hakim, A.L., and Dewi, R. (2021). "Automatic rain detection system based on digital images of CCTV cameras using convolutional neural network method." IOP Conference Series: Earth and Environmental Science, Vol. 893, No. 1, 012048.
- Han, K., and Xiang, X. (2020). "Decomposed cyclegan for single image deraining with unpaired data." ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Barcelona, Spain, pp. 1828-1832.
- Humphry, J.B., Daniel, T.C., Edwards, D.R., and Sharpley, A.N. (2002). "A portable rainfall simulator for plot-scale runoff studies." Applied Engineering in Agriculture, Vol. 18, No. 2, 199.
- Jiang, S., Babovic, V., Zheng, Y., and Xiong, J. (2019). "Advancing opportunistic sensing in hydrology: A novel approach to measuring rainfall with ordinary surveillance cameras." Water Resources Research, Vol. 55, No. 4, pp. 3004-3027. https://doi.org/10.1029/2018WR024480
- Lee, J., Byun, J., Baik, J., Jun, C., and Kim, H.-J. (2023). "Estimation of raindrop size distribution and rain rate with infrared surveillance camera in dark conditions." Atmospheric Measurement Techniques, Vol. 16, No. 3, pp. 707-725. https://doi.org/10.5194/amt-16-707-2023
- Lee, S.H., Jeon, J.H., Choi, D.Y., Park, J.M., and Song, B.C. (2022). "Image based rainfall amount estimation for auto-wiping of vehicles." Neural Computing and Applications, Vol. 34, pp. 15543-15554. https://doi.org/10.1007/s00521-022-07269-3
- Li, M., Xie, Q., Zhao, Q., Wei, W., Gu, S., Tao, J., and Meng, D. (2018a). "Video rain streak removal by multiscale convolutional sparse coding." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, U.S., pp. 6644-6653.
- Li, Z., Hyeon, J., and Choi, H. J. (2018b). "Rainfall recognition from road surveillance videos using TSN." Journal of Korean Society for Atmospheric Environment, Vol. 34, No. 5, pp. 735-747. https://doi.org/10.5572/KOSAE.2018.34.5.735
- Liu, T., Xu, M., and Wang, Z. (2019). "Removing rain in videos: A large-scale database and a two-stream ConvLSTM approach." In 2019 IEEE International Conference on Multimedia and Expo (ICME), IEEE, Shanghai, China, pp. 664-669.
- Notarangelo, N.M., Hirano, K., Albano, R., and Sole, A. (2021). "Transfer learning with convolutional neural networks for rainfall detection in single images." Water, Vol. 13, No. 5, 588.
- Rani, D.S., Jayalakshmi, G.N., and Baligar, V.P. (2020). "Low cost IoT based flood monitoring system using machine learning and neural networks: flood alerting and rainfall prediction." In 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), IEEE, Bangalore, India, pp. 261-267.
- Regmi, T.P., and Thompson, A.L. (2000). "Rainfall simulator for laboratory studies." Applied Engineering in Agriculture, Vol. 16, No. 6, 641.
- Sadeghi, M., Asanjan, A.A., Faridzad, M., Nguyen, P., Hsu, K., Sorooshian, S., and Braithwaite, D. (2019). "PERSIANN-CNN: Precipitation estimation from remotely sensed information using artificial neural networks-convolutional neural networks." Journal of Hydrometeorology, Vol. 20, No. 12, pp. 2273-2289. https://doi.org/10.1175/JHM-D-19-0110.1
- Santos, S.C., Firmino, R.M., Mattos, D.M., and Medeiros, D.S. (2020). "An IoT rainfall monitoring application based on wireless communication technologies." In 2020 4th Conference on Cloud and Internet of Things (CIoT), IEEE, Niteroi, Brazil, pp. 53-56.
- Singh, V.K., Kumar, M.M., Yuvaraj, J., Rubeshkumar, T., Kumar, S., and Padmapriya, S. (2022). "IoT based rainfall surveillance system with sensor integrated infrastructure." 2022 7th International Conference on Communication and Electronics Systems (ICCES), IEEE, Coimbatore, India, pp. 468-472.
- Thompson, A.L., and James, L.G. (1985). "Water droplet impact and its effect on infiltration." Transactions of the ASAE, Vol. 28, No. 5, pp. 1506-1510. https://doi.org/10.13031/2013.32468
- Tu, Z., Talebi, H., Zhang, H., Yang, F., Milanfar, P., Bovik, A., and Li, Y. (2022). "Maxim: Multi-axis mlp for image processing." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, U.S., pp. 5769-5780.
- Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., and Lau, R.W. (2019). "Spatial attentive single-image deraining with a high quality real rain dataset." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, U.S., pp. 12270-12279.
- Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., and Wang, M. (2021). "Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking." IEEE Transactions on Image Processing, Vol. 30, pp. 4788-4801. https://doi.org/10.1109/TIP.2021.3074804
- Xue, M., Hang, R., Liu, Q., Yuan, X.T., and Lu, X. (2021). "CNN-based near-real-time precipitation estimation from Fengyun-2 satellite over Xinjiang, China." Atmospheric Research, Vol. 250, 105337.
- Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., and Yan, S. (2017). "Deep joint rain detection and removal from a single image." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, U.S., pp. 1357-1366.
- Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., and Yang, M.H. (2022). "Restormer: Efficient transformer for highresolution image restoration." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, U.S., pp. 5728-5739.
- Zen, R., Arsa, D.M.S., Zhang, R., Er, N.A.S., and Bressan, S. (2019). "Rainfall estimation from traffic cameras." Database and Expert Systems Applications: 30th International Conference, Linz, Austria, pp. 18-32.
- Zhang, H., and Patel, V.M. (2018). "Density-aware single image de-raining using a multi-stream dense network." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, U.S., pp. 695-704.
- Zhu, H., Peng, X., Zhou, J.T., Yang, S., Chanderasekh, V., Li, L., and Lim, J.H. (2019). "Singe image rain removal with unpaired information: A differentiable programming perspective." Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, No. 01, pp. 9332-9339.