DOI QR코드

DOI QR Code

Cation exchange membrane and anion exchange membrane aided electrolysis processes for hypochlorite generation

  • Seong K. Kim (Department of Chemical Engineering, Hannam University) ;
  • Dong-Min Shin (Department of Chemical Engineering, Hannam University) ;
  • Ji Won Rhim (Department of Chemical Engineering, Hannam University)
  • Received : 2021.07.03
  • Accepted : 2023.03.07
  • Published : 2023.03.25

Abstract

In this study, the influence of different IEMs (ion exchange membranes) to performance of the hypochlorite electrolysis unit with Cl2 recovery stream was investigated. More specifically, Nafion 117-a representative cation exchange membrane (CEM)-and aminated polypheylene oxide (APPO)-an anion exchange membrane (AEM)-were installed in the hypochlorite electrolysis unit, and the performance and the energy efficiency of the units were evaluated and compared. Regardless of whether CEM (Nafion 117) or AEM (APPO) was installed, the rate of hypochlorite generation was increased (by up to 24.3% and 22.2% for Nafion 117 and APPO, respectively) compared with the unit without an IEM. On the other hand, the power efficiency and the optimum operation condition of hypochlorite production units seem to depend on the conductivity and stability of the installed IEM. As the result, between Nafion 117 and APPO, higher performance and efficiency were achieved with Nafion 117, due to excellent conductivity and stability of the membrane.

Keywords

Acknowledgement

This work was supported by National Research Foundation (NRF) of Korea through grant funded by the Korea government (MSIT) (grant number: 2020R1G1 A1101287). S. K. K. also acknowledges the "Basic project (referring to projects performed with the budget directly contributed by the Government to achieve the purposes of establishment of Government-funded research institute)" established due to cooperation project with/supported by the KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY (KRICT).

References

  1. Arges, C.G., Wang, L., Jung, M.S. and Ramani, V. (2015), "Mechanically stable poly(arylene ether) anion exchange membrane prepared from commercially available polymers for alkaline electrochemical devices", J. Electrochem. Soc., 162, F686-F693. https://doi.org/10.1149/2.0361507jes.
  2. Bommaraju, T.V. (1995), "Sodium hypochlorites: its application and stability in bleaching", Water Qual. Res. J., 30, 339-361. https://doi.org/10.2166/wqrj.1995.031.
  3. Gordon, G. and Tachiyashiki, S. (1991), "Kinetics and mechanism of formation of chlorate ion from the hypochlorous acid/chlorite ion reaction at pH 6-10", Environ. Sci. Technol., 25, 468-474. https://doi.org/10.1021/es00015a014.
  4. Hari Gopi, K., Gouse Peera, S., Bhat, S.D., Sridhar, P. and Pitchumani, S. (2014), "Preparation and characterization of quaternary ammonium functionalized poly(2,6-dimethyl-1,4-phenylene oxide) as anion exchange membrane for alkaline polymer electrolyte fuel cells", Int. J. Hydrog. Energy, 39, 2659-2668. https://doi.org/10.1016/j.ijhydene.2013.12.009.
  5. Jung, Y.J., Baek, K.W., Oh, B.S. and Kang, J.W. (2010), "An investigation of the formation of chlorate and perchlorate during electrolysis using Pt/Ti electrodes: the effects of pH and reactive oxygen species and the results of kinetics studies", Water Res., 44, 5345-5355. https://doi.org/10.1016/j.watres.2010.06.029.
  6. Kraft, A., Stadelmann, M., Blaschke, M., Kreysig, D., Sandt, B., Schroder, F. and Rennau, J. (1999), "Electrochemical water disinfection part I: Hypochlorite production from very dilute chloride solutions", J. Appl. Electrochem., 29, 859-866. https://doi.org/10.1023/A:1003650220511.
  7. Kim, J.S., Cho, E.H., Rhim, J.W., Park, C.J. and Park, S.G. (2015), "Preparation of bi-polar membranes and their application to hypochlorite production", Membr. Water Treat., 6(1), 27-42. http://doi.org/10.12989/mwt.2015.6.1.027.
  8. Kim, S.K., Shin, D.M. and Rhim, J.W. (2021), "Designing a high-efficiency hypochlorite ion generation system by combining cation exchange membrane aided electrolysis with chlorine gas recovery stream", J. Membr. Sci., 630, 119318. https://doi.org/10.1016/j.memsci.2021.119318.
  9. Ko, J., Kim, S.K., Yoon, Y., Cho, K.H., Song, W., Kim, T.H., Myung, S., Lee, S.S., Hwang, Y.K., Kim, S.W. and An, K.S. (2018), "Eco-friendly cellulose based solid electrolyte with high performance and enhanced low humidity performance by hybridizing with aluminum fumarate MOF", Mater. Today Energy, 9, 11-18. https://doi.org/10.1016/j.mtener.2018.04.007
  10. Lantagne, D.S. (2008), "Sodium hypochlorite dosage for household and emergency water treatment", J. Am. Water Works Assoc., 100, 106-119. https://doi.org/10.2166/wh.2017.012.
  11. Lee, J., Cha, H.Y., Min, K.J., Cho, J. and Park, K.Y. (2018), "Electrochemical nitrate reduction using a cell divided by ion-exchange membrane", Membr. Water Treat., 9(3), 189-194. http://doi.org/10.12989/mwt.2018.9.3.189.
  12. Levanov, A.V. and Isaikina, O.Y. (2020), "Mechanism and kinetic model of chlorate and perchlorate formation during ozonation of aqueous chloride solutions", Ind. Eng. Chem. Res., 59, 14278-14287. https://doi.org/10.1021/acs.iecr.0c02770.
  13. Lu, M.C., Chen, P.L., Huang, D.J., Liang, C.K., Hsu, C.S. and Liu, W.T. (2021), "Disinfection efficiency of hospital infectious disease wards with chlorine dioxide and hypochlorous acid", Aerobiologia, 37, 29-38. https://doi.org/10.1007/s10453-020-09670-8.
  14. Mara, D. and Horan, N. (2003), Handbook of Water and Wastewater Microbiology, Academic Press, London, U.K.
  15. Palaty, Z. and Bendova, H. (2010), "Permeability of anion-exchange membrane for Clions. Dialysis of hypochloride acid in the presence of nickel chloride", Membr. Water Treat., 1(1), 39-47. http://doi.org/10.12989/mwt.2010.1.1.039.
  16. Piskin, B. and Turkun, M. (1995), "Stability of various sodium hypochlorite solutions", J. Endod., 21, 253-255. https://doi.org/10.1016/S0099-2399(06)80991-X.
  17. Ryu, S., Kim, J.H., Lee, J.Y. and Moon, S.H. (2018), "Investigation of the effects of electric fields on the nano-structure of nafion and its proton conductivity", J. Mater. Chem. A, 6, 20836-20843. https://doi.org/10.1039/C8TA06752J.
  18. Sanchez-Aldana, D., Ortega-Corral, N., Rocha-Gutierrez, B.A., Ballinas-Casarrubias, L., Perez-Dominguez, E.J., Nevarez-Moorillon, G.V., Soto-Salcido, L.A., Ortega-Hernandez, S., Cardenas-Felix, G. and Gonzalez-Sanchez, G. (2018), "Hypochlorite generation from a water softener spent brine", Water 10, 1733. https://doi.org/10.3390/w10121733.
  19. Severing, A.L., Rembe, J.D., Koester, V. and Stuermer, E.K. (2019), "Safety and efficacy profiles of different commercial sodium hypochlorite/hypochlorous acid solutions (NaClO/HClO): Antimicrobial efficacy, cytotoxic impact and physicochemical parameters in vitro", J. Antimicrob. Chemother., 74, 365-372. https://doi.org/10.1093/jac/dky432.
  20. Sone, Y., Ekdunge, P. and Simonsson, D. (1996), "Proton conductivity of Nafion 117 measured by a four-electrode ac impedance method", J. Electrochem. Soc., 143, 1254. https://doi.org/10.1149/1.1836625.
  21. Twort, A.C., Ratnayaka, D.D. and Brandt, M.J. (2000) Water Supply, Butterworth-Heinemann, Oxford, U.K.
  22. Urben, P. G. (2007) Bretherick's Handbook of Reactive Chemical Hazards, Academic Press, Oxford, U.K.
  23. Vijayaraghavan, K., Ahmad, D. and Yazid, A.Y.A. (2008), "Electrolytic treatment of latex wastewater." Desalination, 219, 214-221. https://doi.org/10.1016/j.desal.2007.05.014.
  24. Vijayaraghavan, K., Ramanujam, T.K. and Balasubramanian, N. (1999), "In situ hypochlorous acid generation for the treatment of distillery spentwash", Ind. Eng. Chem. Res., 38, 2264-2267. https://doi.org/10.1021/ie980166x.
  25. Wang, Y., Xue, Y. and Zhang, C. (2020), "Generation and application of reactive chlorine species by electrochemical process combined with UV irradiation: synergistic mechanism for enhanced degradation performance", Sci. Total Environ., 712, 136501. https://doi.org/10.1016/j.scitotenv.2020.136501.
  26. Wilheim, N., Kaufmann, A., Blanton, E. and Lantagne, D. (2018), "Sodium hypochlorite dosage for household and emergency water treatment: updated recommendations", J. Water Health, 16, 112-125. https://doi.org/10.2166/wh.2017.012.
  27. Wilson, V.A. (1935), "Determination of available chlorine in hypochlorite solutions by direct titration with sodium thiosulfate", Ind. Eng. Chem. Anal. Ed., 7, 44-45. https://doi.org/10.1021/ac50093a022.
  28. Zierof, M.L., Polycarou, M.M. and Uber, J.G. (1998), "Development and autocalibration of an input-output model of chlorine transport in drinking water distribution systems", IEEE T. Contr. Syst. T., 6, 543-553. https://doi.org/10.1109/87.701351.