Acknowledgement
This work was supported by National Research Foundation (NRF) of Korea through grant funded by the Korea government (MSIT) (grant number: 2020R1G1 A1101287). S. K. K. also acknowledges the "Basic project (referring to projects performed with the budget directly contributed by the Government to achieve the purposes of establishment of Government-funded research institute)" established due to cooperation project with/supported by the KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY (KRICT).
References
- Arges, C.G., Wang, L., Jung, M.S. and Ramani, V. (2015), "Mechanically stable poly(arylene ether) anion exchange membrane prepared from commercially available polymers for alkaline electrochemical devices", J. Electrochem. Soc., 162, F686-F693. https://doi.org/10.1149/2.0361507jes.
- Bommaraju, T.V. (1995), "Sodium hypochlorites: its application and stability in bleaching", Water Qual. Res. J., 30, 339-361. https://doi.org/10.2166/wqrj.1995.031.
- Gordon, G. and Tachiyashiki, S. (1991), "Kinetics and mechanism of formation of chlorate ion from the hypochlorous acid/chlorite ion reaction at pH 6-10", Environ. Sci. Technol., 25, 468-474. https://doi.org/10.1021/es00015a014.
- Hari Gopi, K., Gouse Peera, S., Bhat, S.D., Sridhar, P. and Pitchumani, S. (2014), "Preparation and characterization of quaternary ammonium functionalized poly(2,6-dimethyl-1,4-phenylene oxide) as anion exchange membrane for alkaline polymer electrolyte fuel cells", Int. J. Hydrog. Energy, 39, 2659-2668. https://doi.org/10.1016/j.ijhydene.2013.12.009.
- Jung, Y.J., Baek, K.W., Oh, B.S. and Kang, J.W. (2010), "An investigation of the formation of chlorate and perchlorate during electrolysis using Pt/Ti electrodes: the effects of pH and reactive oxygen species and the results of kinetics studies", Water Res., 44, 5345-5355. https://doi.org/10.1016/j.watres.2010.06.029.
- Kraft, A., Stadelmann, M., Blaschke, M., Kreysig, D., Sandt, B., Schroder, F. and Rennau, J. (1999), "Electrochemical water disinfection part I: Hypochlorite production from very dilute chloride solutions", J. Appl. Electrochem., 29, 859-866. https://doi.org/10.1023/A:1003650220511.
- Kim, J.S., Cho, E.H., Rhim, J.W., Park, C.J. and Park, S.G. (2015), "Preparation of bi-polar membranes and their application to hypochlorite production", Membr. Water Treat., 6(1), 27-42. http://doi.org/10.12989/mwt.2015.6.1.027.
- Kim, S.K., Shin, D.M. and Rhim, J.W. (2021), "Designing a high-efficiency hypochlorite ion generation system by combining cation exchange membrane aided electrolysis with chlorine gas recovery stream", J. Membr. Sci., 630, 119318. https://doi.org/10.1016/j.memsci.2021.119318.
- Ko, J., Kim, S.K., Yoon, Y., Cho, K.H., Song, W., Kim, T.H., Myung, S., Lee, S.S., Hwang, Y.K., Kim, S.W. and An, K.S. (2018), "Eco-friendly cellulose based solid electrolyte with high performance and enhanced low humidity performance by hybridizing with aluminum fumarate MOF", Mater. Today Energy, 9, 11-18. https://doi.org/10.1016/j.mtener.2018.04.007
- Lantagne, D.S. (2008), "Sodium hypochlorite dosage for household and emergency water treatment", J. Am. Water Works Assoc., 100, 106-119. https://doi.org/10.2166/wh.2017.012.
- Lee, J., Cha, H.Y., Min, K.J., Cho, J. and Park, K.Y. (2018), "Electrochemical nitrate reduction using a cell divided by ion-exchange membrane", Membr. Water Treat., 9(3), 189-194. http://doi.org/10.12989/mwt.2018.9.3.189.
- Levanov, A.V. and Isaikina, O.Y. (2020), "Mechanism and kinetic model of chlorate and perchlorate formation during ozonation of aqueous chloride solutions", Ind. Eng. Chem. Res., 59, 14278-14287. https://doi.org/10.1021/acs.iecr.0c02770.
- Lu, M.C., Chen, P.L., Huang, D.J., Liang, C.K., Hsu, C.S. and Liu, W.T. (2021), "Disinfection efficiency of hospital infectious disease wards with chlorine dioxide and hypochlorous acid", Aerobiologia, 37, 29-38. https://doi.org/10.1007/s10453-020-09670-8.
- Mara, D. and Horan, N. (2003), Handbook of Water and Wastewater Microbiology, Academic Press, London, U.K.
- Palaty, Z. and Bendova, H. (2010), "Permeability of anion-exchange membrane for Clions. Dialysis of hypochloride acid in the presence of nickel chloride", Membr. Water Treat., 1(1), 39-47. http://doi.org/10.12989/mwt.2010.1.1.039.
- Piskin, B. and Turkun, M. (1995), "Stability of various sodium hypochlorite solutions", J. Endod., 21, 253-255. https://doi.org/10.1016/S0099-2399(06)80991-X.
- Ryu, S., Kim, J.H., Lee, J.Y. and Moon, S.H. (2018), "Investigation of the effects of electric fields on the nano-structure of nafion and its proton conductivity", J. Mater. Chem. A, 6, 20836-20843. https://doi.org/10.1039/C8TA06752J.
- Sanchez-Aldana, D., Ortega-Corral, N., Rocha-Gutierrez, B.A., Ballinas-Casarrubias, L., Perez-Dominguez, E.J., Nevarez-Moorillon, G.V., Soto-Salcido, L.A., Ortega-Hernandez, S., Cardenas-Felix, G. and Gonzalez-Sanchez, G. (2018), "Hypochlorite generation from a water softener spent brine", Water 10, 1733. https://doi.org/10.3390/w10121733.
- Severing, A.L., Rembe, J.D., Koester, V. and Stuermer, E.K. (2019), "Safety and efficacy profiles of different commercial sodium hypochlorite/hypochlorous acid solutions (NaClO/HClO): Antimicrobial efficacy, cytotoxic impact and physicochemical parameters in vitro", J. Antimicrob. Chemother., 74, 365-372. https://doi.org/10.1093/jac/dky432.
- Sone, Y., Ekdunge, P. and Simonsson, D. (1996), "Proton conductivity of Nafion 117 measured by a four-electrode ac impedance method", J. Electrochem. Soc., 143, 1254. https://doi.org/10.1149/1.1836625.
- Twort, A.C., Ratnayaka, D.D. and Brandt, M.J. (2000) Water Supply, Butterworth-Heinemann, Oxford, U.K.
- Urben, P. G. (2007) Bretherick's Handbook of Reactive Chemical Hazards, Academic Press, Oxford, U.K.
- Vijayaraghavan, K., Ahmad, D. and Yazid, A.Y.A. (2008), "Electrolytic treatment of latex wastewater." Desalination, 219, 214-221. https://doi.org/10.1016/j.desal.2007.05.014.
- Vijayaraghavan, K., Ramanujam, T.K. and Balasubramanian, N. (1999), "In situ hypochlorous acid generation for the treatment of distillery spentwash", Ind. Eng. Chem. Res., 38, 2264-2267. https://doi.org/10.1021/ie980166x.
- Wang, Y., Xue, Y. and Zhang, C. (2020), "Generation and application of reactive chlorine species by electrochemical process combined with UV irradiation: synergistic mechanism for enhanced degradation performance", Sci. Total Environ., 712, 136501. https://doi.org/10.1016/j.scitotenv.2020.136501.
- Wilheim, N., Kaufmann, A., Blanton, E. and Lantagne, D. (2018), "Sodium hypochlorite dosage for household and emergency water treatment: updated recommendations", J. Water Health, 16, 112-125. https://doi.org/10.2166/wh.2017.012.
- Wilson, V.A. (1935), "Determination of available chlorine in hypochlorite solutions by direct titration with sodium thiosulfate", Ind. Eng. Chem. Anal. Ed., 7, 44-45. https://doi.org/10.1021/ac50093a022.
- Zierof, M.L., Polycarou, M.M. and Uber, J.G. (1998), "Development and autocalibration of an input-output model of chlorine transport in drinking water distribution systems", IEEE T. Contr. Syst. T., 6, 543-553. https://doi.org/10.1109/87.701351.