References
- Ahmadi, H., Ekrami, M., Sabouri, H. and Bayat, M. (2019), "Experimental and numerical investigation on the effect of projectile nose shape in low-velocity impact loading on fiber metal laminate panels", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233, 3665-3679. https://doi.org/10.1177/0954410018804384.
- Aoki, Y., Ishikawa, T., Takeda, S.I., Hayakawa, Y., Harada, A. and Kikukawa, H. (2006), "Fatigue test of lightweight composite wing structure", Int. J. Fatigue, 28(2006) 1109-1115. https://doi.org/10.1016/j.ijfatigue.2006.02.017.
- Azhdari, S., Fakhreddini-Najafabadi, S. and Taheri-Behrooz, F. (2021), "An experimental and numerical investigation on low velocity impact response of GLAREs", Compos. Struct., 271, 114123. https://doi.org/10.1016/j.compstruct.2021.114123.
- Azizi, A., Khalili, S.M.R. and Malekzadeh Fard K. (2018), "Low velocity impact response and dynamic stresses of thick high order laminated composite truncated sandwich conical shell based on a new TDOF spring-mass-damper model considering structural damping", Steel Compos. Struct., 26(6), 771-791. https://doi.org/10.12989/scs.2018.26.6.771.
- Bikakis, G.S. and Savaidis, A. (2016), "FEM simulation of simply supported GLARE plates under lateral indentation loading and unloading", Theoretic, Appl. Fracture Mech., 83, 2-10. https://doi.org/10.1177/0021998314548882.
- Clark Jr, R., Coughran, B., Traina, I., Hernandez, A., Scheck, T., Etuk, C., Peters, J., Lee, E.W., Ogren, J. and Es-Said, O.S. (2005), "On the correlation of mechanical and physical properties of 7075-T6 Al alloy", Eng. Fail. Anal., 12, 520-526. https://doi.org/10.1016/j.engfailanal.2004.09.005.
- Dadej, K., Bienias, J. and Surowska, B. (2019), "On the effect of glass and carbon fiber hybridization in fiber metal laminates: Analytical, numerical and experimental investigation", Compos. Struct., 220, 250-260. https://doi.org/10.1016/j.compstruct.2019.03.051.
- Davies, G.A.O. and Olsson, R. (2004), "Impact on composite structures", Aeronautic. J., 108, 541-563. https://doi.org/10.1017/S0001924000000385.
- Dhaliwal, G.S. and Newaz, G.M. (2016), "Modeling low velocity impact response of carbon fiber reinforced aluminum laminates (CARALL)", J. Dyn. Behavior Mater., 2, 181-193. https://doi.org/10.1007/s40870-016-0057-3.
- Drozdziel, M., Jakubczak, P. and Bienias, J. (2021), "Low-velocity impact resistance of thin-ply in comparison with conventional Aluminum-carbon laminates", Compos. Struct., 256, 113083. https://doi.org/10.1016/j.compstruct.2020.113083.
- Erklig A. and Bulut M. (2017), "Experimental investigation on tensile and Charpy impact behavior of Kevlar/S-glass/epoxy hybrid composite laminates", J. Polymer Eng., 37, 177-184. https://doi.org/10.1515/polyeng-2015-0538.
- Ghabezi, P. and Harrison N. (2020), "Mechanical behavior and long-term life prediction of carbon/epoxy and glass/epoxy composite laminates under artificial seawater environment", Mater. Lett., 261, 127091. https://doi.org/10.1016/j.matlet.2019.127091.
- Ghasemabadian, M.A., Kadkhodayan, M., Altenhof, W. and Liu Y. (2021), "An experimental and numerical study on the crush responses and energy absorption characteristics of single- and bi-layer cups under low-velocity impact", Steel Compos. Struct., 39 (6), 665-683. https://doi.org/10.12989/scs.2021.39.6.665.
- He, W., Wang, L., Liu, H., Wang, C., Yao, L., Li, Q. and Sun, G. (2021), "On impact behavior of fiber metal laminate (FML) structures: A state-of-the-art review", Thin-Walled Struct., 167, 108026. https://doi.org/10.1016/j.tws.2021.108026.
- Hegde, S., Shenoy, B.S. and Chethan, K.N. (2019), "Review on carbon fiber reinforced polymer (CFRP) and their mechanical performance", Mater. Today: Proceedings, 19, 658-662. https://doi.org/10.1016/j.matpr.2019.07.749.
- Jakubczak, P., Bienias, J., Drozdziel, M., Podolak, P. and Harmasz, A. (2019), "The effect of layer thicknesses in hybrid titanium-carbon laminates on low-velocity impact response", Materials, 13(1), 103. https://doi.org/10.3390/ma13010103.
- Kakati, S. and Chakraborty, D. (2023), "Delamination in GLARE laminates subjected to oblique low velocity impact considering friction", Europ. J. Mech.-A/Solids, 97, 104817. https://doi.org/10.1016/j.compstruct.2020.112083.
- Karatas, M.A. and Gokkaya, H. (2018), "A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials", Defense Technol., 14, 318-326. https://doi.org/10.1016/j.dt.2018.02.001.
- Khalid, M.Y., Arif, Z.U., Al Rashid, A., Shahid, M.I., Ahmed, W., Tariq, A.F. and Abbas, Z. (2021), "Interlaminar shear strength (ILSS) characterization of fiber metal laminates (FMLs) manufactured through VARTM process", Forces Mech., 4, 100038. https://doi.org/10.1016/j.finmec.2021.100038.
- Khalid, M.Y., Al Rashid, A. and Sheikh, M.F. (2021), "Effect of anodizing process on inter laminar shear strength of GLARE composite through T-peel test: Experimental and numerical approach", Experiment. Techniques, 45, 227-235. https://doi.org/10.1007/s40799-020-00433-1.
- Khalid, M.Y., Arif, Z.U., Ahmed, W. and Arshad, H. (2022), Evaluation of tensile properties of fiber metal laminates under different strain rates", Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 236, 556-564. https://doi.org/10.1177/09544089211053063.
- Kumar, D. and Singh, K.K. (2015), "An approach towards damage free machining of CFRP and GFRP composite material: a review", Adv. Compos. Mater., 24, 49-63. https://doi.org/10.1080/09243046.2014.928966.
- Li L., Sun L., Wang T., Kang N. and Cao W. (2019), "Repeated low-velocity impact response and damage mechanism of glass fiber Aluminum laminates", Aeros. Sci. Technol., 84, 995-1010. https://doi.org/10.1016/j.ast.2018.11.038.
- Liang, S., Gning, P.B. and Guillaumat, L. (2012), "A comparative study of fatigue behavior of flax/epoxy and glass/epoxy composites", Compos. Sci. Technol., 72, 535-543. https://doi.org/10.1016/j.compscitech.2012.01.011.
- Liu, C., Zhang, Y.X. and Ye, L. (2017), "High velocity impact responses of sandwich panels with metal fiber laminate skins and Aluminium foam core", Int. J. Impact Eng., 100, 139-153. https://doi.org/10.1016/j.ijimpeng.2016.09.004.
- Megeri, S. and Naik, G.N. (2021), "Numerical studies of the low velocity impact behavior on hybrid fiber metal laminates", Mater. Today: Proceedings, 44, 1860-1864. https://doi.org/10.1016/j.matpr.2020.12.030.
- Meng, X., Yao, L., Wang, C., He, W., Xie, L. and Zhang, H. (2020), "Investigation on the low-velocity impact behavior of non-symmetric FMLs-experimental and numerical methods", Int. J. Crashworthiness, 1-19. https://doi.org/10.1080/13588265.2020.1777619.
- Morampudi, P., Namala, K.K., Gajjela, Y.K., Barath, M. and Prudhvi, G. (2021), "Review on glass fiber reinforced polymer composites", Mater. Today: Proceedings, 43, 314-319. https://doi.org/10.1016/j.matpr.2020.11.669.
- Patil, N.A., Mulik, S.S., Wangikar, K.S. and Kulkarni, A.P. (2018), "Characterization of glass laminate Aluminum reinforced epoxy-A review", Procedia Manufacturing, 20, 554-562. https://doi.org/10.1016/j.promfg.2018.02.083.
- Qatu, M.S., Sullivan, R.W. and Wang W. (2010), "Recent research advances on the dynamic analysis of composite shells: 2000-2009", Compos. Struct., 93, 14-31. https://doi.org/10.1016/j.compstruct.2010.05.014.
- Saba, N., Jawaid, M., Alothman, O.Y. and Paridah, M.T. (2016), "A review on dynamic mechanical properties of natural fiber reinforced polymer composites", Construct. Build. Mater., 106, 149-159. https://doi.org/10.1016/j.conbuildmat.2015.12.075.
- Sadighi, M., Alderliesten, R.C. and Benedictus R. (2012), "Impact resistance of fiber-metal laminates: A review", Int. J. Impact Eng., 49, 77-90. https://doi.org/10.1016/j.ijimpeng.2012.05.006.
- Salve, A., Kulkarni, R. and Mache A. (2016), "A review: fiber metal laminates (FML's)-manufacturing, test methods and numerical modeling", Int. J. Eng. Technol. Sci., 3, 71-84. https://doi.org/10.15282/ijets.6.2016.1.10.1060.
- Sarasini, F., Tirillo, J., Ferrante, L., Valente, M., Valente, T., Lampani, L., Gaudenzi, P., Cioffi, S., Iannace, S. and Sorrentino L.J.C.P.B.E. (2014), "Drop-weight impact behavior of woven hybrid basalt-carbon/epoxy composites", Compos. Part B: Eng., 59(2014) 204-220. https://doi.org/10.1016/j.compositesb.2013.12.006.
- Seifoori S., Izadi R. and Yazdinezhad A.R. (2019), "Impact damage detection for small-and large-mass impact on CFRP and GFRP composite laminate with different striker geometry using experimental, analytical and FE methods", Acta Mechanica, 230, 4417-4433. https://doi.org/10.1007/s00707-019-02506-8.
- Seifoori S., Mirzaei M. and Afjoland H. (2020), "Experimental and FE analysis for accurate measurement of deflection in CFRP and GFRP laminates under bending", Measurement, 153, 107445. https://doi.org/10.1016/j.measurement.2019.107445.
- Seifoori, S., Parrany, A.M. and Mirzarahmani, S. (2021), "Impact damage detection in CFRP and GFRP curved composite laminates subjected to low-velocity impacts", Compos. Struct., 261 113278. https://doi.org/10.1016/j.compstruct.2020.113278.
- Sosa, J.C. and Karapurath, N. (2012), "Delamination modelling of GLARE using the extended finite element method". Compos. Sci. Technol., 72(7), 788-791. https://doi.org/10.1016/j.compscitech.2012.02.005.
- Xie, Z., Peng, F. and Zhao, T. (2014), "Experimental study on fatigue crack propagation of fiber metal laminates", Steel Compos. Struct., 17 (2), 145-157. http://dx.doi.org/10.12989/scs.2014.17.2.145.
- Yamini, S. and Young, R.J. (1980), "The mechanical properties of epoxy resins", J. Mater. Sci., 15, 1823-1831. https://doi.org/10.1007/BF00550602.