DOI QR코드

DOI QR Code

Investigating the deflection of GLARE and CARALL laminates under low-velocity impact test, experimentally and FEM simulation

  • Received : 2023.01.24
  • Accepted : 2023.04.21
  • Published : 2023.05.10

Abstract

The main objective of this article is to investigate the response of different fiber metal laminates subjected to low velocity impact experimentally and numerically via finite element method (FEM). Hence, two different fiber metal laminate (FML) samples (GLARE/CARALL) are made of 7075-T6 aluminum sheets and polymeric composites reinforced by E-glass/carbon fibers. In order to study the responses to the low velocity impacts, samples are tested by drop weight machine. The projectiles are released from 1- and 1.5-meters height were the speed reaches to 4.42 and5.42 meter per second and the impact energies are measured as 6.7 and 10 Joules. In addition to experimental study, finite element simulation is done and results are compared. Finally, a detailed study on the maximum deflection, delamination and damages in laminates and geometry's effect of projectiles on the laminate response is done. Results show that maximum deflection caused by spherical projectile for GLARE samples is more apparent in comparison with the CARALL samples. Moreover, the maximum deflection of GLARE samples subjected to spherical projectile with 6.7 Joules impact energy, 127% increases in comparison with the CARALL samples in spite of different total thickness.

Keywords

References

  1. Ahmadi, H., Ekrami, M., Sabouri, H. and Bayat, M. (2019), "Experimental and numerical investigation on the effect of projectile nose shape in low-velocity impact loading on fiber metal laminate panels", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233, 3665-3679. https://doi.org/10.1177/0954410018804384.
  2. Aoki, Y., Ishikawa, T., Takeda, S.I., Hayakawa, Y., Harada, A. and Kikukawa, H. (2006), "Fatigue test of lightweight composite wing structure", Int. J. Fatigue, 28(2006) 1109-1115. https://doi.org/10.1016/j.ijfatigue.2006.02.017.
  3. Azhdari, S., Fakhreddini-Najafabadi, S. and Taheri-Behrooz, F. (2021), "An experimental and numerical investigation on low velocity impact response of GLAREs", Compos. Struct., 271, 114123. https://doi.org/10.1016/j.compstruct.2021.114123.
  4. Azizi, A., Khalili, S.M.R. and Malekzadeh Fard K. (2018), "Low velocity impact response and dynamic stresses of thick high order laminated composite truncated sandwich conical shell based on a new TDOF spring-mass-damper model considering structural damping", Steel Compos. Struct., 26(6), 771-791. https://doi.org/10.12989/scs.2018.26.6.771.
  5. Bikakis, G.S. and Savaidis, A. (2016), "FEM simulation of simply supported GLARE plates under lateral indentation loading and unloading", Theoretic, Appl. Fracture Mech., 83, 2-10. https://doi.org/10.1177/0021998314548882.
  6. Clark Jr, R., Coughran, B., Traina, I., Hernandez, A., Scheck, T., Etuk, C., Peters, J., Lee, E.W., Ogren, J. and Es-Said, O.S. (2005), "On the correlation of mechanical and physical properties of 7075-T6 Al alloy", Eng. Fail. Anal., 12, 520-526. https://doi.org/10.1016/j.engfailanal.2004.09.005.
  7. Dadej, K., Bienias, J. and Surowska, B. (2019), "On the effect of glass and carbon fiber hybridization in fiber metal laminates: Analytical, numerical and experimental investigation", Compos. Struct., 220, 250-260. https://doi.org/10.1016/j.compstruct.2019.03.051.
  8. Davies, G.A.O. and Olsson, R. (2004), "Impact on composite structures", Aeronautic. J., 108, 541-563. https://doi.org/10.1017/S0001924000000385.
  9. Dhaliwal, G.S. and Newaz, G.M. (2016), "Modeling low velocity impact response of carbon fiber reinforced aluminum laminates (CARALL)", J. Dyn. Behavior Mater., 2, 181-193. https://doi.org/10.1007/s40870-016-0057-3.
  10. Drozdziel, M., Jakubczak, P. and Bienias, J. (2021), "Low-velocity impact resistance of thin-ply in comparison with conventional Aluminum-carbon laminates", Compos. Struct., 256, 113083. https://doi.org/10.1016/j.compstruct.2020.113083.
  11. Erklig A. and Bulut M. (2017), "Experimental investigation on tensile and Charpy impact behavior of Kevlar/S-glass/epoxy hybrid composite laminates", J. Polymer Eng., 37, 177-184. https://doi.org/10.1515/polyeng-2015-0538.
  12. Ghabezi, P. and Harrison N. (2020), "Mechanical behavior and long-term life prediction of carbon/epoxy and glass/epoxy composite laminates under artificial seawater environment", Mater. Lett., 261, 127091. https://doi.org/10.1016/j.matlet.2019.127091.
  13. Ghasemabadian, M.A., Kadkhodayan, M., Altenhof, W. and Liu Y. (2021), "An experimental and numerical study on the crush responses and energy absorption characteristics of single- and bi-layer cups under low-velocity impact", Steel Compos. Struct., 39 (6), 665-683. https://doi.org/10.12989/scs.2021.39.6.665.
  14. He, W., Wang, L., Liu, H., Wang, C., Yao, L., Li, Q. and Sun, G. (2021), "On impact behavior of fiber metal laminate (FML) structures: A state-of-the-art review", Thin-Walled Struct., 167, 108026. https://doi.org/10.1016/j.tws.2021.108026.
  15. Hegde, S., Shenoy, B.S. and Chethan, K.N. (2019), "Review on carbon fiber reinforced polymer (CFRP) and their mechanical performance", Mater. Today: Proceedings, 19, 658-662. https://doi.org/10.1016/j.matpr.2019.07.749.
  16. Jakubczak, P., Bienias, J., Drozdziel, M., Podolak, P. and Harmasz, A. (2019), "The effect of layer thicknesses in hybrid titanium-carbon laminates on low-velocity impact response", Materials, 13(1), 103. https://doi.org/10.3390/ma13010103.
  17. Kakati, S. and Chakraborty, D. (2023), "Delamination in GLARE laminates subjected to oblique low velocity impact considering friction", Europ. J. Mech.-A/Solids, 97, 104817. https://doi.org/10.1016/j.compstruct.2020.112083.
  18. Karatas, M.A. and Gokkaya, H. (2018), "A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials", Defense Technol., 14, 318-326. https://doi.org/10.1016/j.dt.2018.02.001.
  19. Khalid, M.Y., Arif, Z.U., Al Rashid, A., Shahid, M.I., Ahmed, W., Tariq, A.F. and Abbas, Z. (2021), "Interlaminar shear strength (ILSS) characterization of fiber metal laminates (FMLs) manufactured through VARTM process", Forces Mech., 4, 100038. https://doi.org/10.1016/j.finmec.2021.100038.
  20. Khalid, M.Y., Al Rashid, A. and Sheikh, M.F. (2021), "Effect of anodizing process on inter laminar shear strength of GLARE composite through T-peel test: Experimental and numerical approach", Experiment. Techniques, 45, 227-235. https://doi.org/10.1007/s40799-020-00433-1.
  21. Khalid, M.Y., Arif, Z.U., Ahmed, W. and Arshad, H. (2022), Evaluation of tensile properties of fiber metal laminates under different strain rates", Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 236, 556-564. https://doi.org/10.1177/09544089211053063.
  22. Kumar, D. and Singh, K.K. (2015), "An approach towards damage free machining of CFRP and GFRP composite material: a review", Adv. Compos. Mater., 24, 49-63. https://doi.org/10.1080/09243046.2014.928966.
  23. Li L., Sun L., Wang T., Kang N. and Cao W. (2019), "Repeated low-velocity impact response and damage mechanism of glass fiber Aluminum laminates", Aeros. Sci. Technol., 84, 995-1010. https://doi.org/10.1016/j.ast.2018.11.038.
  24. Liang, S., Gning, P.B. and Guillaumat, L. (2012), "A comparative study of fatigue behavior of flax/epoxy and glass/epoxy composites", Compos. Sci. Technol., 72, 535-543. https://doi.org/10.1016/j.compscitech.2012.01.011.
  25. Liu, C., Zhang, Y.X. and Ye, L. (2017), "High velocity impact responses of sandwich panels with metal fiber laminate skins and Aluminium foam core", Int. J. Impact Eng., 100, 139-153. https://doi.org/10.1016/j.ijimpeng.2016.09.004.
  26. Megeri, S. and Naik, G.N. (2021), "Numerical studies of the low velocity impact behavior on hybrid fiber metal laminates", Mater. Today: Proceedings, 44, 1860-1864. https://doi.org/10.1016/j.matpr.2020.12.030.
  27. Meng, X., Yao, L., Wang, C., He, W., Xie, L. and Zhang, H. (2020), "Investigation on the low-velocity impact behavior of non-symmetric FMLs-experimental and numerical methods", Int. J. Crashworthiness, 1-19. https://doi.org/10.1080/13588265.2020.1777619.
  28. Morampudi, P., Namala, K.K., Gajjela, Y.K., Barath, M. and Prudhvi, G. (2021), "Review on glass fiber reinforced polymer composites", Mater. Today: Proceedings, 43, 314-319. https://doi.org/10.1016/j.matpr.2020.11.669.
  29. Patil, N.A., Mulik, S.S., Wangikar, K.S. and Kulkarni, A.P. (2018), "Characterization of glass laminate Aluminum reinforced epoxy-A review", Procedia Manufacturing, 20, 554-562. https://doi.org/10.1016/j.promfg.2018.02.083.
  30. Qatu, M.S., Sullivan, R.W. and Wang W. (2010), "Recent research advances on the dynamic analysis of composite shells: 2000-2009", Compos. Struct., 93, 14-31. https://doi.org/10.1016/j.compstruct.2010.05.014.
  31. Saba, N., Jawaid, M., Alothman, O.Y. and Paridah, M.T. (2016), "A review on dynamic mechanical properties of natural fiber reinforced polymer composites", Construct. Build. Mater., 106, 149-159. https://doi.org/10.1016/j.conbuildmat.2015.12.075.
  32. Sadighi, M., Alderliesten, R.C. and Benedictus R. (2012), "Impact resistance of fiber-metal laminates: A review", Int. J. Impact Eng., 49, 77-90. https://doi.org/10.1016/j.ijimpeng.2012.05.006.
  33. Salve, A., Kulkarni, R. and Mache A. (2016), "A review: fiber metal laminates (FML's)-manufacturing, test methods and numerical modeling", Int. J. Eng. Technol. Sci., 3, 71-84. https://doi.org/10.15282/ijets.6.2016.1.10.1060.
  34. Sarasini, F., Tirillo, J., Ferrante, L., Valente, M., Valente, T., Lampani, L., Gaudenzi, P., Cioffi, S., Iannace, S. and Sorrentino L.J.C.P.B.E. (2014), "Drop-weight impact behavior of woven hybrid basalt-carbon/epoxy composites", Compos. Part B: Eng., 59(2014) 204-220. https://doi.org/10.1016/j.compositesb.2013.12.006.
  35. Seifoori S., Izadi R. and Yazdinezhad A.R. (2019), "Impact damage detection for small-and large-mass impact on CFRP and GFRP composite laminate with different striker geometry using experimental, analytical and FE methods", Acta Mechanica, 230, 4417-4433. https://doi.org/10.1007/s00707-019-02506-8.
  36. Seifoori S., Mirzaei M. and Afjoland H. (2020), "Experimental and FE analysis for accurate measurement of deflection in CFRP and GFRP laminates under bending", Measurement, 153, 107445. https://doi.org/10.1016/j.measurement.2019.107445.
  37. Seifoori, S., Parrany, A.M. and Mirzarahmani, S. (2021), "Impact damage detection in CFRP and GFRP curved composite laminates subjected to low-velocity impacts", Compos. Struct., 261 113278. https://doi.org/10.1016/j.compstruct.2020.113278.
  38. Sosa, J.C. and Karapurath, N. (2012), "Delamination modelling of GLARE using the extended finite element method". Compos. Sci. Technol., 72(7), 788-791. https://doi.org/10.1016/j.compscitech.2012.02.005.
  39. Xie, Z., Peng, F. and Zhao, T. (2014), "Experimental study on fatigue crack propagation of fiber metal laminates", Steel Compos. Struct., 17 (2), 145-157. http://dx.doi.org/10.12989/scs.2014.17.2.145.
  40. Yamini, S. and Young, R.J. (1980), "The mechanical properties of epoxy resins", J. Mater. Sci., 15, 1823-1831. https://doi.org/10.1007/BF00550602.