• Title/Summary/Keyword: 수소충전소

Search Result 89, Processing Time 0.025 seconds

Hydrogen Infrastructure Issues and Challenges (수소인프라 이슈 및 과제)

  • Lee, Young Chul
    • Prospectives of Industrial Chemistry
    • /
    • v.24 no.4
    • /
    • pp.36-51
    • /
    • 2021
  • 오늘날 수소는 화석연료와 다르게 친환경 측면, 신사업 창출 및 국내 에너지 안보 확대 측면에서 미래에너지원으로 각광받고 있다. 이에 따라 세계 유수의 자동차 기업들이 궁극의 차량이라는 수소전기차 기술 개발 및 상용화에 주력하고 있으며 각국은 자국의 수소인프라의 핵심인 수소충전소 구축 전략을 강화하고 있다. 또한 수소전기차 초기 보급을 활성화하기 위해 국가 지원하에 수소충전소 공급을 적극 추진하고 있다. 전 세계적으로 500개 이상의 수소충전소가 건설, 운영 및 계획되고 있다. 국내에서도 수소전기차, 수소버스 및 수소트럭 등 보급 계획과 더불어 이에 필요한 수소충전소 공급 로드맵을 연도별로 발표하는 등 수송분야에 수소 에너지 도입이 강력하게 진행되고 있다. 그러나 우리나라 수소충전소 구축에 필요한 설비 등은 아직 자체 조달이 거의 이루어지지 않아 많은 설비 및 부품들이 국외 도입에 따른 여러 문제점들로 인해 어렵게 구축된 많은 수소충전소 운영이 원활하지 않은 상황이다. 따라서 국내외 수소충전소 구축 현황 및 계획에 대해 정리 및 분석하여 국내의 수소충전소 구축 및 운영에 대한 이슈들을 알아보고 해결해야 할 과제는 어떤 것이 있는지 알아보고자 한다.

Feasibility Study of the Hydrogen Station Construction Project (수소충전소 구축사업의 경제성 분석 사례연구)

  • Kim, Tae-heon;Youn, Ho-chang;Kim, Beom-chang
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.377-378
    • /
    • 2018
  • 수소는 지구에 풍부히 존재하는 자원이며 이를 이용해 에너지를 생산하는 개념은 오래전부터 연구되어 왔다. 본 논문은 수소산업의 여러 분야 중 수소충전소 구축에 대해 추정 손익계산을 하였으며 이를 통해 수소충전소 건립 및 운영에 있어 보다 합리적인 예측을 도모하고자 한다.

  • PDF

A study on diagnosis of failure of hydrogen refueling station diaphragm compressor using heterogeneous model ensemble (이종 모델간 앙상블을 이용한 수소충전소 다이어프램 압축기 고장 진단에 관한 연구)

  • Young-Woo Hong;Seong-Eun Kim;Duck-Shick Shin;Dong-Young Yoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.681-684
    • /
    • 2023
  • 우리나라의 수소연료전지 차량의 점유율이 매년 증가하고 있으나, 수소충전소 설비의 잦은 중단으로 수소연료전지 차량 운전자들이 제때 차량을 충전하지 못하는 불편이 발생하고 있다. 본 논문에서는 수소충전소 설비 중 Diaphragm을 사용하는 압축기의 이상 패턴을 탐지하는 Ensemble 모델을 통해 수소충전소에서 2023년 1월 1일부터 2023년 6월 28일 동안 수집된 데이터를 분석하였으며, 해당 기간 동안 발생했던 고장에 대해 2일전부터 이상 패턴이 10,000 이상 탐지되는 결과를 얻었다.

The Factor Analysis for Acceptance on Hydrogen Refueling Station Using Structure Equation Model (구조방정식 모델을 이용한 수소충전소 수용에 미치는 요인분석)

  • Lee, Mi Jeong;Baek, Jong-Bae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.356-362
    • /
    • 2022
  • Research related to hydrogen technology is being actively conducted around the world. Korea is also making great efforts to develop technology to leap forward as a hydrogen economy powerhouse. In particular, the world's No. 1 hydrogen vehicle penetration rate is proof of this. However, the construction of hydrogen refueling stations is being delayed. The biggest delay factor is the public opposition. As such, policies without public support cannot be successfully implemented and are not sustainable. Therefore, this study intends to analyze the factors affecting the acceptability of hydrogen refueling stations in favor of and against them. As a research method, the basic factors affecting acceptability were identified by reviewing previous studies, and a questionnaire was designed and investigated based on the established factors. The validity and reliability of the questionnaire were verified, and the hypothesis was verified through correlation analysis. And, using structural equation modeling, a factor model was developed on the acceptability of hydrogen refueling stations. As a result of the study, acceptability defined private acceptability and public acceptability. In the case of private acceptability, it was confirmed that the higher the attitude toward the environment, the higher the level of knowledge about the hydrogen charging station, and the lower the degree of feeling the risk of the hydrogen charging station, the higher the acceptability. In the case of public acceptability, it was confirmed that the higher the benefit, the better the attitude toward the environment, and the lower the risk-taking characteristics of the individual, the higher the acceptability. Therefore, in this study, based on the potential factors verified in previous studies, the main factors affecting the acceptance on hydrogen refueling stations were identified. And the acceptance model was developed using structural equation modeling. This study is expected to provide basic data to seek ways to improve the acceptance of public when implementing national policies such as hydrogen refueling stations, and to be used analysis data for scientific communication.

Development of Virtual Reality Program for Safety Improvement of Hydrogen Fueling Station (수소충전소의 안전성 향상을 위한 버츄얼리얼리티 프로그램 개발)

  • Kim, Eun-Jung;Kim, Young-Gyu;Moon, Il
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.29-33
    • /
    • 2008
  • The focus of this study is to develop a virtual reality program for safe training and virtual reality of hydrogen station. This programme consists of 4 modules such as hydrogen and safety module, hydrogen station module, hypothetical experience module, and accident scenarios module for hydrogen experts. User can experience with principles and operation condition and collect the information of hydrogen station by this programme and can simultaneously study the probable scenarios, emergency response plan/standard operating procedure about hydrogen stations. It makes it possible to educate and safety publicity for the trainee. This virtual reality program will be expected to be helpful for hydrogen station's construction propagation and technology development which is essential for hydrogen energy induction.

  • PDF

Safety Analysis of Potential Hazards at Hydrogen Refueling Station (수소충전소 잠재적 위험에 대한 안전성해석)

  • Park, Woo-Il;Kim, Dong-Hwan;Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.43-48
    • /
    • 2021
  • This study was conducted using FLACS, a specialized gas accident analysis program. Hydrogen refueling stations subject of safety analysis, consist of compression facilities, storage tanks, and hydrogen piping. The safety analysis of potential risk factors was conducted after reflecting the design specifications of major facilities and components, environmental conditions around hydrogen refueling stations, etc. As of 2021, about 70 refueling stations in Korea are available, and 1,200 are scheduled to be introduced in the next 2040. To prepare for possible accidents caused by potential hazards for the safe distribution of hydrogen refueling stations, we intend to derive hydrogen leakage diffusion scenarios and review their safety.

A Study on the Quantitative Risk Assessment of Hydrogen-CNG Complex Refueling Station (수소-CNG 복합충전소 정량적 위험성평가에 관한 연구)

  • Kang, Seung-Kyu;Huh, Yun-Sil
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • This study performed a quantitative risk assessment for hydrogen-CNG complex refueling stations. Individual and societal risks were calculated by deriving accident scenarios that could occur at hydrogen and CNG refueling stations and by considering the frequency of accidents occurring for each scenario. As a result of the risk assessment, societal risk levels were within the acceptable range. However, individual risk has occurred outside the allowable range in some areas. To identify and manage risk components, high risk components were discovered through risk contribution analysis. High risks at the hydrogen-CNG complex refueling station were large leakage from CNG storage containers, compressors, and control panels. The sum of these risks contributed to approximately 88% of the overall risk of the fueling station. Therefore, periodic and intensive safety management should be performed for these high-risk elements.

A Study on the Analysis of Risk Factors for Hydrogen Fuel Stations Based on Quantitative Risk Assessment (정량적 위험성평가 기반 수소충전소 위험요소 분석 연구)

  • Lee, Jae Yong;Lee, Jieun;Song, Hyoungwoon
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.70-76
    • /
    • 2020
  • In this study, we suggested the direction to lower the risk by analyzing the risk factors for each process for the hydrogen refueling station to be installed in Chungju. HyRAM, one of the quantitative risk assessment tools for hydrogen gas, was used to analyze the hazards. By evaluating the frequency of accidents and consequences for each process, the most dangerous processes and accident factors were presented, and the risk mitigation factors were synthesized. Hydrogen refueling stations are currently in the global infrastructure expansion period, and the lack of accident data could be an alternative to this risk assessment and is expected to be used as a reference for the future expansion of hydrogen refueling stations.

Risk Assessment of Tube Trailer Leaks at Hydrogen Charging Station (수소충전소 튜브트레일러 누출에 따른 위험성평가)

  • Park, Woo-Il;Yoon, Jin-Hee;Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.57-62
    • /
    • 2021
  • In this study, risk assessment was conducted in case of leakage of storage facilities (tube trailer) using the HyKoRAM program developed through international joint research. The high-pressure gas facilities in the hydrogen filling station are divided into four main categories: storage facilities (tube trailers), processing facilities (compressors), compressed gas facilities, and filling facilities (dispensers). Among them, the design specifications of the tube trailer, which is a storage facility, and the surrounding environmental conditions were reflected to construct an accident scenario with previously occurring accidents and potential accidents. Through this, we identify the risks of storage facilities at hydrogen refueling stations and suggest measures to improve the safety of hydrogen charging stations.

Inplementation of a Hydrogen Leakage Simulator with HyRAM+ (HyRAM+를 이용한 수소 누출 시뮬레이터 구현)

  • Sung-Ho Hwang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.551-557
    • /
    • 2024
  • Hydrogen is a renewable energy source with various characteristics such as clean, carbon-free and high-energy, and is internationally recognized as a "future energy". With the rapid development of the hydrogen energy industry, more hydrogen infrastructure is needed to meet the demand for hydrogen. However, hydrogen infrastructure accidents have been occurring frequently, hindering the development of the hydrogen industry. HyRAM+, developed by Sandia National Laboratories, is a software toolkit that integrates data and methods related to hydrogen safety assessments for various storage applications, including hydrogen refueling stations. HyRAM+'s physics mode simulates hydrogen leak results depending on the hydrogen refueling station components, graphing gas plume dispersion, jet frame temperature and trajectory, and radiative heat flux. In this paper, hydrogen leakage data was extracted from a hydrogen refueling station in Samcheok, Gangwon-do, using HyRAM+ software. A hydrogen leakage simulator was developed using data extracted from HyRAM+. It was implemented as a dashboard that shows the data generated by the simulator using a database and Grafana.