DOI QR코드

DOI QR Code

발광다이오드(LED) 파장에 따른 Tetraselmis suecica와 T. tetrathele의 탄수화물, 단백질 및 지질 함량에 미치는 영향

Effects of Light Quality of a Light-Emitting Diode (LED) on Carbohydrate, Protein, and Lipid Contents of Tetraselmis suecica and T. tetrathele

  • 한경하 (한국해양과학기술원 해양시료도서관) ;
  • 오석진 (부경대학교 지구환경시스템과학부)
  • Kyong Ha Han (Library of Marine Samples, Korea Institute of Ocean Science & Technology) ;
  • Seok Jin Oh (Division of Earth and Environmental System Science Pukyong National University)
  • 투고 : 2023.01.20
  • 심사 : 2023.02.24
  • 발행 : 2023.02.28

초록

본 연구는 Tetraselmis suecica와 T. tetrathele의 영양물질 증진효과를 가져올 수 있는 배양시스템 구축을 위하여, 발광다이오드(LED)의 파장별(청색; 450 nm, 황색; 590 nm, 적색; 630 nm) 탄수화물, 단백질, 지질 함량을 측정하였다. 두 종 모두 단백질 비율(42~69%)이 가장 높았으며, 생장속도가 낮았던 황색파장에서 탄수화물, 단백질, 지질의 높은 함량을 보였고, 생장속도가 가장 높았던 적색파장에서는 낮은 함량을 보였다. 이러한 결과는 세포 분열 속도의 감소로 인해 단백질 합성과 함께 세포의 화학적 조성과 효소 활동에 변화를 주어 지질과 탄수화물 함량이 증가한 것으로 생각된다. 따라서, T. suecica와 T. tetrathele의 유용한 생화학적 물질의 증대를 위해 대수생장기 초기와 중기는 적색 LED 그리고 대수생장기 후기에는 황색 LED를 주사하는 2단계 LED 배양을 제안하였다.

To establish a culture system with enhanced cellular nutrition, we investigated the effects of light quality (blue, 450 nm; yellow, 590 nm; and red, 630 nm) of a light-emitting diode (LED) on the biochemical composition of Tetraselmis suecica and T. tetrathele. The protein content of both species was higher (42-69%) than the content of other biochemical substances under all wavelengths. Carbohydrate, protein, and lipid contents were higher under the yellow wavelength, which showed a low growth rate, than those under other wavelengths. The contents of all biochemical substances were low under the red wavelength, which showed a high growth rate. These results indicated that protein synthesis occurs in response to decreased cell division rate, while lipid and carbohydrate synthesis occurs owing to altered chemical composition and enzymatic activity. Therefore, we suggested a two-phase LED culture system, which emitted red LED during the early-middle exponential phase and yellow LED during the late exponential and stationary phases, to increase the yield of useful biochemical substances of T. suecica and T. tetrathele.

키워드

과제정보

이 논문은 부경대학교 자율창의학술연구비(2021년)에 의하여 연구되었습니다.

참고문헌

  1. An, H. C., J. H. Bae, O. N. Kwon, H. G. Park, and J. C. Park(2014), Changes in the growth and biochemical composition of Chaetoceros calcitrans cultures using light-emitting diodes, Fisheries Technology, Vol. 50, No. 4, 447-545.
  2. Ben-Amotz, A., R. Fishler, and A. Schneller(1987), Chemical composition of dietary species of marine unicellular algae and rotifers with emphasis on fatty acids, Marine Biology, Vol. 95, No. 1, pp. 31-36. https://doi.org/10.1007/BF00447482
  3. Cameron, H., M. T. Mata, and C. Riquelme(2018), The effect of heavy metals on the viability of Tetraselmis marina AC16-MESO and an evolution of the potential use of this microalgae in bioremediation, PeerJ, Vol. 6, p. 1-13.
  4. Chen, H. B., J. Y. Wu, C. F. Wang, C. C. Fu, C. J. Shieh, C. I. Chen, and Y. C. Liu(2010), Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes, Biochemical Engineering Journal, Vol. 53, No. 1, pp. 52-56. https://doi.org/10.1016/j.bej.2010.09.004
  5. Converti, A., A. A. Casazza, E. Y. Ortiz, P. Perego, and M. Del Borghi(2009), Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production, Chemical Engineering and Processing, Vol. 48, pp. 1146-1151. https://doi.org/10.1016/j.cep.2009.03.006
  6. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith(1956), Colorimetric method for determination of sugars and related substances, Analytical Chemistry, Vol. 28, No. 3, pp. 350-356. https://doi.org/10.1021/ac60111a017
  7. Fu, W., O. Gudmundsson, G. Paglia, G. Herjolfsson, O. S. Andresson, B. O. Palsson, and S. Brynjolfsson(2013), Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution, Applied microbiology and biotechnology, Vol. 97, No. 6, pp. 2395-2403. https://doi.org/10.1007/s00253-012-4502-5
  8. Han, K. H. and S. J. Oh(2018), Effects of Various Intensities and Wavelengths of Light Emitting Diodes (LEDs) on the Growth of the Prasinophytes Tetraselmis suecica and T. tetrathele, Korean Journal of Fisheries and Aquatic Science, Vol. 51, No. 1, pp. 64-71. https://doi.org/10.5657/KFAS.2018.0064
  9. Huerlimann, R., R. de Nys, and K. Heimann(2010), Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale up production, Biotechnology and Bioengineering, Vol. 107, No. 2, pp. 245-257. https://doi.org/10.1002/bit.22809
  10. Hsieh, C. H. and W. T. Wu(2009), A novel photobioreactor with transparent rectangular chambers for cultivation of microalgae, Biochemical Engineering Journal, Vol. 46, No. 3, pp. 300-305. https://doi.org/10.1016/j.bej.2009.06.004
  11. Ho, S., A. Nakanishi, X. Ye, J. Chang, K. Hara, and T. Hasunuma(2014), Optimizing biodiesel production in marine Chlamydomonassp. JSC4 through metabolic profiling and an innovative salinity-gradient strategy, Biotechnology for Biofuels, Vol. 7, pp. 2-16. https://doi.org/10.1186/1754-6834-7-2
  12. Katsuda, T., A. Lababpour, K. Shimahara, and S. Katoh (2004), Astaxanthin production by Haematococcus plucialis under illumination with LEDs, Enzyme and Microbial Technology, Vol. 35, No. 1, pp. 81-86. https://doi.org/10.1016/j.enzmictec.2004.03.016
  13. Kim, J. Y., H. Joo, and J. H. Lee(2011), Carbon dioxide fixation and light source effects of Spirulina platensis NIES 39 for LED photobioreactor design, Applied Chemistry for Engineering, Vol. 22, No. 3, 301-307.
  14. Kim, C. W. and S. B. Hur(1998), Dietary value of frozen and freeze-dried Tetraselmis suecica, Journal of Aquaculture, Vol. 11, No. 2, pp. 183-191.
  15. Kwon, H. K.(2013), A study on phytoremediation of eutrphic coastal sediments using benthic microalgae and light emitting diode. Ph. D. Thesis, Pukyung National University, Busan, p. 255.
  16. Kubin, S., E. Borns, J. Doucha, and U. Seiss(1983), Light absorption and production rate of Chlorella vulgaris in light of different spectral composition, Biochemie und Physiologie der Pflanzen, Vol. 178, No. 2-3, pp. 193-205. https://doi.org/10.1016/S0015-3796(83)80032-8
  17. Maddux, W. S. and R. F. Jones(1964), Some interaction of temperature, light intensity and nutrient concentration during the continuous culture of Nitzschia closterium and Tetraselmis sp, Limnology and Oceanography, Vol. 9, No. 1, pp. 79-86. https://doi.org/10.4319/lo.1964.9.1.0079
  18. Lee, C. G. and B. O. Palsson(1994), High-density algal photobioreactors using Light-Emitting Diodes, Biotechnology and Bioengineering, Vol. 44, No. 10, pp. 1161-1167. https://doi.org/10.1002/bit.260441002
  19. Lee, Y. J., C. H. Lee, K. C. Cho, H. N. Moon, J. Namgung, K. H. Kim, B. J. Lim, D. K. Kim, and I. K. Yeo(2017), Effect of temperature-induced two-stage cultivation on the lipid and saccharide accumulation of microalgae Chlorella vulgaris and Dunaliella salina, Korean Journal of Fisheries and Aquatic Sciences, Vol. 50, No. 1, pp. 32-40. https://doi.org/10.5657/KFAS.2017.0032
  20. Lederman, T. and P. Tett(1981), Problems in modelling the photosynthesis-light relationship for phytoplankton, Botanica Marina, Vol. 24, pp. 125-134.
  21. Lim, S. B., J. W. Jeong, J. S. Yeon, N. K. Lee, and J. I. Won(2015), An analysis of lipid contents produced from three different microalgae depending, Korean Chemical Engineering Research, Vol. 53, No. 4, pp. 468-471. https://doi.org/10.9713/kcer.2015.53.4.468
  22. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall(1951), Protein measurement with the Folin phenol reagent, Journal of Biological Chemistry, Vol. 193, No. 1, pp. 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
  23. Marchetti, J., G. Bougaran, L. Le Dean, C. Megrier, E. Lukomska, R. Kaas, E. Olivo, R. Baron, R. Robert and J. P. Cadoret(2012), Optimizing conditions for the continuous culture of Isochrysis affinis galbana relevant to commercial hatcheries, Aquaculture, Vol. 326-329, pp. 106-115. https://doi.org/10.1016/j.aquaculture.2011.11.020
  24. Marsh, J. B. and D. B. Weinstein(1966), Simple charring method for determination of lipids, Journal of Lipid Research, Vol. 7, No. 4, pp. 574-576. https://doi.org/10.1016/S0022-2275(20)39274-9
  25. Marchetti, J. M., V. U. Miguel, and A. F. Errazu(2007), Possible methods for biodiesel production, Renewable and Sustainable Energy Reviews, Vol. 11, No. 6, pp. 1300-1311. https://doi.org/10.1016/j.rser.2005.08.006
  26. Markou, G.(2014), Effect of various colors of light-emitting diodes (LEDs) on the biomass composition of Arthrospira platensis cultivated in semi-continuous mode, Applied Biochemistry and Biotechnology, Vol. 172, No. 5, pp. 2758-2768.
  27. Marshall, R., S. McKinley, and C. M. Pearce(2010), Effects of nutrition on larval growth and survival in bivalves, Reviews in Aquaculture, Vol. 2, No. 1, pp. 33-55. https://doi.org/10.1111/j.1753-5131.2010.01022.x
  28. Mata, T. M., A. A. Martins, and N. S. Caetano(2010), Microalgae for biodiesel production and other applications: a review, Renewable and sustainable energy reviews, Vol. 14, No. 1, pp. 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  29. Meher, L., D. Vidyasagar, and S. Naik(2007), Technical aspects of biodiesel production by transesterification-a review, Renewable and Sustainable Energy Reviews, Vol. 10, No. 3, pp. 248-268. https://doi.org/10.1016/j.rser.2004.09.002
  30. Michels, M. H., M. Vaskoska, M. H. Vermue, and R. H. Wijffels(2014), Growth of Tetraselmis suecica in a tubular photobioreactor on wastewater from a fish farm, Water Research, Vol. 65, No. 15, pp. 290-296.
  31. Min, B. H.(2018), Growth and survival on live food for larval development stage of Ark shell Scapharca broughtonii, The Korean Journal Malacology, Vol. 34, No. 2, pp. 79-88. https://doi.org/10.9710/kjm.2018.34.2.79
  32. Oh, S. J., D. I. Kim, T. Sajima, Y. Shimasaki, Y. Matsuyama, Y. Oshima, T. Honjo, and H. S. Yang(2008), Effects of irradiance of various wavelengths from light-emitting diodes on the growth of the harmful dinoflagellate Heterocapsa circularisquama and the diatom Skeletonema costatum, Fisheries Science, Vol. 74, pp. 137-142. https://doi.org/10.1111/j.1444-2906.2007.01503.x
  33. Prates, D. D. F., E. M. Radmann, J. H. Duarte, M. G. Morais, and J. A. V. Costa(2018), Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production, Bioresource Technology, Vol. 256, pp. 38-43. https://doi.org/10.1016/j.biortech.2018.01.122
  34. Ra, C. H., C. H. Kang, J. H. Jung, G. T. Jeong, and S. K. Kim(2016), Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae, Bioresource technology, Vol. 212, pp. 254-261. https://doi.org/10.1016/j.biortech.2016.04.059
  35. Reitan, K. I., J. R. Rainuzzo, and Y. Olsen(1994), Effect of nutrient limitation on fatty acid and lipid content of marine microalgae, Journal of Phycology, Vol. 30, No. 6, pp. 972-979. https://doi.org/10.1111/j.0022-3646.1994.00972.x
  36. Seo, Y. H., C. Cho, J. Lee, and J. Han(2014), Enhancement of growth and lipid production from microalgae using fluorescent paint under the solar radiation, Bioresource Technology, Vol. 173, pp. 193-197. https://doi.org/10.1016/j.biortech.2014.09.012
  37. Schulze, P. S., C. F. M. Carolina, H. Pereira, K. N. Gangadhar, L. M. Schuler, T. F. Santos, J. C. S. Varela, and L. Barreira(2017), Urban wastewater treatment by Tetraselmis sp. CTP4 (Chlorophyta), Bioresource Technology, Vol. 223, pp. 175-183. https://doi.org/10.1016/j.biortech.2016.10.027
  38. Sharmila, D., A. Suresh, J. Indhuathi, K. Gowtham, and N. Velmurugan(2018), Impact of various color filtered LED lights on microalgae growth, pigments and lipid production, European Journal of Biotechnology and Bioscience, Vol. 6, No. 6, pp 1-7.
  39. Siron, R., G. Giusti, and B. Berland(1989), Changes in the fatty acid composition of Phaeodactylum tricornutum and Dunaliella tertiolecta during growth and under phosphorus deficiency, Marine Ecology Progress. Series, Vol. 55, pp. 95-100. https://doi.org/10.3354/meps055095
  40. Shih, S. C. C., N. S. Mufti, M. D. Chamberlain, J. Kim, and A. R. Wheeler(2014), A droplet-based screen for wavelengthdependent lipid production in algae, Energy and Environment Science, Vol. 7, pp. 2366-2375. https://doi.org/10.1039/c4ee01123f
  41. Shu, C. H., C. C. Tsai, W. H. Liao, K. Y. Chen, and H. C. Huang(2012), Effects of light quality on the accumulation of oil in a mixed culture of Chlorella sp. and Saccharomyces cerevisiae, Journal of Chemical Technology and Biotechnology, Vol. 87, No. 5, pp. 601-607. https://doi.org/10.1002/jctb.2750
  42. Teo, C. L., M. Atta, A. Bukhari, M. Taisir, A. M. Yusuf, and A. Idris(2014) Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths, Bioresource Technology, Vol. 162, pp. 38-44. https://doi.org/10.1016/j.biortech.2014.03.113
  43. Woo, S. G. and J. H. Park(2012), Effects of phosphorus stravation on fatty acid production by microalgae cultivated from wastewater environment, Journal of Civil and Environmental Engineering Research, Vol. 32, No. 4B, pp. 253-259.  https://doi.org/10.12652/Ksce.2012.32.4B.253
  44. Wang, C. Y., C. C. Fu, and Y. C. Liu(2007), Effects of using light-emitting diodes on the cultivation of Spirulina platensis, Biochemical Engineering Journal, Vol. 37, No. 1, pp. 21-25. https://doi.org/10.1016/j.bej.2007.03.004
  45. Xia, L., J. Rong, H. Yang, Q. He, D. Zhang, and C. Hu (2014), NaCl as an effective inducer for lipid accumulation in freshwater microalgae Desmodesmus abundans, Bioresource Technology, Vol. 161, pp. 402-409. https://doi.org/10.1016/j.biortech.2014.03.063
  46. Zicheng, H., Z. Chen, D. Jingxuan, L. Shuning, Z. Mingmin, H. Yongjin, W. Mingzi, and C. Bilian(2021), Simultaneous enhancement on renewable bioactive compounds from Porphyridium cruentum via a novel two-stage cultivation, Algal Research, Vol. 55, pp. 1-10.  https://doi.org/10.1016/j.algal.2021.102270