DOI QR코드

DOI QR Code

Assessment of CUPID code used for condensation heat transfer analysis under steam-air mixture conditions

  • Ji-Hwan Hwang (School of Energy Systems Engineering, Chung-Ang University) ;
  • Jungjin Bang (School of Energy Systems Engineering, Chung-Ang University) ;
  • Dong-Wook Jerng (School of Energy Systems Engineering, Chung-Ang University)
  • Received : 2022.07.05
  • Accepted : 2022.12.25
  • Published : 2023.04.25

Abstract

In this study, three condensation models of the CUPID code, i.e., the resolved boundary layer approach (RBLA), heat and mass transfer analogy (HMTA) model, and an empirical correlation, were tested and validated against the COPAIN and CAU tests. An improvement on HMTA model was also made to use well-known heat transfer correlations and to take geometrical effect into consideration. The RBLA was a best option for simulating the COPAIN test, having mean relative error (MRE) about 0.072, followed by the modified HMTA model (MRE about 0.18). On the other hand, benchmark against CAU test (under natural convection and occurred on a slender tube) indicated that the modified HMTA model had better accuracy (MRE about 0.149) than the RBLA (MRE about 0.314). The HMTA model with wall function and the empirical correlation underestimated significantly, having MRE about 0.787 and 0.55 respectively. When using the HMTA model, consideration of geometrical effect such as tube curvature was essential; ignoring such effect leads to significant underestimation. The HMTA and the empirical correlation required significantly less computational resources than the RBLA model. Considering that the HMTA model was reasonable accurate, it may be preferable for large-scale simulations of containment.

Keywords

Acknowledgement

This research was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP: Ministry of Science, ICT and Future Planning) (No. NRF-2017M2B2B1072552)

References

  1. C. Byun, D. Jerng, N. Todreas, M. Driscoll, Conceptual design and analysis of a semi-passive containment cooling system for a large concrete containment, Nucl. Eng. Des. 199 (3) (2000) 227-242. https://doi.org/10.1016/S0029-5493(00)00228-4
  2. H. Uchida, A. Oyama, Y. Togo, Evaluation of Post-incident Cooling Systems of Light Water Power Reactors, Tokyo Univ., 1965.
  3. T. Tagami, Interim Report on Safety Assessments and Facilities Establishment Project for June 1965, No. 1, Japanese Atomic Energy Research Agency, 1965.
  4. A.A. Dehbi, The Effects of Noncondensable Gases on Steam Condensation under Turbulent Natural Convection Conditions, Massachusetts Institute of Technology, 1991.
  5. H. Liu, N. Todreas, M. Driscoll, An experimental investigation of a passive cooling unit for nuclear plant containment, Nucl. Eng. Des. 199 (3) (2000) 243-255. https://doi.org/10.1016/S0029-5493(00)00229-6
  6. M. Kawakubo, M. Aritomi, H. Kikura, T. Komeno, An experimental study on the cooling characteristics of passive containment cooling systems, J. Nucl. Sci. Technol. 46 (4) (2009) 339-345. https://doi.org/10.1080/18811248.2007.9711539
  7. J. Su, Z. Sun, G. Fan, M. Ding, Experimental study of the effect of non-condensable gases on steam condensation over a vertical tube external surface, Nucl. Eng. Des. 262 (2013) 201-208. https://doi.org/10.1016/j.nucengdes.2013.05.002
  8. J. Su, Z. Sun, M. Ding, G. Fan, Analysis of experiments for the effect of noncondensable gases on steam condensation over a vertical tube external surface under low wall subcooling, Nucl. Eng. Des. 278 (2014) 644-650. https://doi.org/10.1016/j.nucengdes.2014.07.022
  9. Y. Hsii, CONTEMPT: Computer Program for Predicting Containment Pressure-Temperature Response to a Loss-Of-Coolant Accident, Babcock and Wilcox Co., Lynchburg, VA (USA), 1978. Nuclear Power Generation Div.
  10. Y.J. Choo, S.J. Honga, S.H. Hwanga, M.K. Kima, B.C. Leea, S.J. Hab, H. Choib, Performance comparison of containment PT analysis between CAP and CONTEMPT code, in: Transactions of the Korean Nuclear Society Autumn Meeting, 2013. Gyeongju, Korea.
  11. M. Bucci, M. Sharabi, W. Ambrosini, N. Forgione, F. Oriolo, S. He, Prediction of transpiration effects on heat and mass transfer by different turbulence models, Nucl. Eng. Des. 238 (4) (2008) 958-974. https://doi.org/10.1016/j.nucengdes.2007.10.003
  12. W. Ambrosini, N. Forgione, F. Merli, F. Oriolo, S. Paci, I. Kljenak, P. Kostka, L. Vyskocil, J. Travis, J. Lehmkuhl, Lesson learned from the SARNET wall condensation benchmarks, Ann. Nucl. Energy 74 (2014) 153-164. https://doi.org/10.1016/j.anucene.2014.07.014
  13. W. Ambrosini, N. Forgione, S. Durand, Analysis of experimental data of condensation in the presence of non-condensable gases by a CFD code, in: The International Topical Meeting on Nuclear Reactor Thermal-Hydraulics-NUR-ETH-15, ITA, 2013, pp. 1-12.
  14. W. Ambrosini, M. Bucci, N. Forgione, F. Oriolo, S. Paci, J. Magnaud, E. Studer, E. Reinecke, S. Kelm, W. Jahn, Comparison and analysis of the condensation benchmark results, in: 3rd European Review Meeting on Severe Accident Research (ERMSAR-2008), Citeseer, Nesseber, Bulgaria, 2008.
  15. W. Ambrosini, M. Bucci, N. Forgione, F. Oriolo, S. Paci, Quick look report on SARNET2 condensation benchmark-2 results, Rep. DIMNP RL (2010) 1252.
  16. A. Dehbi, F. Janasz, B. Bell, Prediction of steam condensation in the presence of noncondensable gases using a CFD-based approach, Nucl. Eng. Des. 258 (2013) 199-210. https://doi.org/10.1016/j.nucengdes.2013.02.002
  17. X. Cheng, P. Bazin, P. Cornet, D. Hittner, J. Jackson, J.L. Jimenez, A. Naviglio, F. Oriolo, H. Petzold, Experimental data base for containment thermal-hydraulic analysis, Nucl. Eng. Des. 204 (1-3) (2001) 267-284. https://doi.org/10.1016/S0029-5493(00)00311-3
  18. J. Malet, E. Porcheron, F. Dumay, J. Vendel, Code-experiment comparison on wall condensation tests in the presence of non-condensable gases-numerical calculations for containment studies, Nucl. Eng. Des. 253 (2012) 98-113. https://doi.org/10.1016/j.nucengdes.2012.08.012
  19. J. Malet, E. Porcheron, J. Vendel, OECD international standard problem ISP-47 on containment thermal-hydraulics-conclusions of the TOSQAN part, Nucl. Eng. Des. 240 (10) (2010) 3209-3220. https://doi.org/10.1016/j.nucengdes.2010.05.061
  20. L. Vyskocil, J. Schmid, J. Macek, CFD simulation of air-steam flow with condensation, Nucl. Eng. Des. 279 (2014) 147-157. https://doi.org/10.1016/j.nucengdes.2014.02.014
  21. OECD/SETH-2 Project-PANDA and MISTRA Experiments Final Summary Report (Investigation of Key Issues for the Simulation of Thermal-Hydraulic Conditions in Water Reactor Containment), Nuclear Energy Agency, 2012.
  22. B.G. Jeon, D.Y. Kim, C.W. Shin, H.C. No, Parametric experiments and CFD analysis on condensation heat transfer performance of externally condensing tubes, Nucl. Eng. Des. 293 (2015) 447-457. https://doi.org/10.1016/j.nucengdes.2015.07.071
  23. J. Bang, J.-H. Hwang, H.G. Kim, D.-W. Jerng, Parametric Analyses for the Design of a Closed-Loop Passive Containment Cooling System, Nuclear Engineering and Technology, 2020.
  24. W.H. Mcadams, Heat Transmission, 3d Ed, McGraw-Hill, 1954.
  25. M. Bucci, Experimental and Computational Analysis of Condensation Phenomena for the Thermal-Hydraulic Analysis of LWRs Containments, University of Pisa, 2009. Ph. D. thesis.
  26. A. Dehbi, A generalized correlation for steam condensation rates in the presence of air under turbulent free convection, Int. J. Heat Mass Tran. 86 (2015) 1-15. https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.034
  27. B. Launder, D. Spalding, The numerical computation of turbulent flows, Comput. Methods Appl. Mech. Eng. 3 (2) (1974) 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
  28. D. Wang, L. Tong, X. Cao, Numerical study on the influence of steam condensation on hydrogen distribution in local compartments, Ann. Nucl. Energy 121 (2018) 468-478. https://doi.org/10.1016/j.anucene.2018.07.044
  29. B.D. Chung, S.W. Bae, S.W. Lee, C. Yoon, M.K. Hwang, K.D. Kim, J.J. Jeong, MARS Code Manual Volume V: Models and Correlations, Korea Atomic Energy Research Institute, 2010.
  30. J.M. Yoo, J.H. Kang, B.J. Yun, S.W. Hong, J.J. Jeong, Improvement of the MELCOR condensation heat transfer model for the thermal-hydraulic analysis of a PWR containment, Prog. Nucl. Energy 104 (2018) 172-182. https://doi.org/10.1016/j.pnucene.2017.09.012
  31. E. Rahnm, Gothic Thermal Hydraulic Analysis Package Technical Manual Version 8.0 (QA), NAI 8907e06, Rev 19 (2012).
  32. T. Wang, D. Wang, L. Tong, X. Cao, Improvement of condensation model with the presence of non-condensable gas for thermal-hydraulic analysis in containment, Front. Energy Res. 9 (2021) 233.
  33. C. Popiel, J. Wojtkowiak, K. Bober, Laminar free convective heat transfer from isothermal vertical slender cylinder, Exp. Therm. Fluid Sci. 32 (2) (2007) 607-613. https://doi.org/10.1016/j.expthermflusci.2007.07.003
  34. A. Dehbi, Correcting for tube curvature effects on condensation in the presence of a noncondensable gas in laminar regimes, Int. J. Heat Mass Tran. 151 (2020), 119384.
  35. J.-H. Hwang, D.-W. Jerng, An improved heat transfer model for steam-air mixture condensation with the curvature effect on vertical tubes, Int. Commun. Heat Mass Tran. 123 (2021), 105218.
  36. C. Wilke, C. Lee, Estimation of diffusion coefficients for gases and vapors, Ind. Eng. Chem. 47 (6) (1955) 1253-1257. https://doi.org/10.1021/ie50546a056
  37. B.E. Poling, J.M. Prausnitz, J.P. O'connell, The Properties of Gases and Liquids, Mcgraw-hill, New York, 2001.
  38. CD-adapco Inc, STAR-CCM+ 10.06 User Guide, 2015.
  39. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, M.G. Mayer, Molecular Theory of Gases and Liquids, Wiley, New York, 1954.
  40. C.L.V. Jayatilleke, The influence of Prandtl number and surface roughness on the resistance of the laminar sub-layer to momentum and heat transfer, Prog. Heat Mass Transfer 1 (1969).
  41. J.H. Sohn, H.Y. Yoon, Assessment of wall condensation models using CUPID code, in: Transactions of the Korean Nuclear Society Spring Meeting, 2018. Jeju, Korea.
  42. A. Dehbi, On the adequacy of wall functions to predict condensation rates from steam-noncondensable gas mixtures, Nucl. Eng. Des. 265 (2013) 25-34. https://doi.org/10.1016/j.nucengdes.2013.07.014
  43. F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine, Fundamentals of Heat and Mass Transfer, Wiley, New York, 1996.
  44. T. Cebeci, Laminar-free-convective-heat transfer from the outer surface of a vertical slender circular cylinder, in: Heat Transfer 1974; Proceedings of the Fifth International Conference, vol. 3, 1974, pp. 15-19. Tokyo.
  45. J. Lee, G.-C. Park, H.K. Cho, Validation of Wall Film Condensation model in heat structure coupled CUPID-MARS, in: Transactions of the Korean Nuclear Society Autumn Meeting, Gyoung-Ju, Korea, 2017.
  46. H. Reynolds, T. Swearingen, D. McEligot, Thermal entry for low Reynolds number turbulent flow, J. Basic Eng. 91 (1969).