DOI QR코드

DOI QR Code

Investigation of 180W separation by transient single withdrawal cascade using Salp Swarm optimization algorithm

  • Morteza Imani (Engineering Department, Shahid Beheshti University) ;
  • Mahdi Aghaie (Engineering Department, Shahid Beheshti University)
  • Received : 2022.06.14
  • Accepted : 2022.12.06
  • Published : 2023.04.25

Abstract

The 180W is the lightest isotope of Tungsten with small abundance ratio. It is slightly radioactive (α decay), with an extremely long half-life. Its separation is possible by non-conventional single withdrawal cascades. The 180W is used in radioisotopes production and study of metals through gamma-ray spectroscopy. In this paper, single withdrawal cascade model is developed to evaluate multicomponent separation in non-conventional transient cascades, and available experimental results are used for validation. Numerical studies for separation of 180W in a transient single withdrawal cascade are performed. Parameters affecting the separation and equilibrium time of cascade such as number of stages, cascade arrangements, feed location and flow rate for a fixed number of gas centrifuges (GC) are investigated. The Salp Swarm Algorithm (SSA) as a bio-inspired optimization algorithm is applied as a novel method to minimize the feed consumption to obtain desired concentration in the collection tank. Examining different cascade arrangements, it is observed in arrangements with more stages, the separation is further efficient. Based on the obtained results, with increasing feed flow rate, for fixed product concentration, the cascade equilibrium time decreases. Also, it is shown while the feed location is the farthest stage from the collection tank, the separation and cascade equilibrium time are well-organized. Finally, using SSA optimal parameters of the cascade is calculated, and optimal arrangement to produce 5 gr of 180W with 90% concentration in the tank, is proposed.

Keywords

References

  1. A. Mundl, R.J. Walker, J.R. Reimink, R.L. Rudnick, R.M. Gaschnig, Tungsten-182 in the upper continental crust: evidence from glacial diamictites, Chem. Geol. 494 (2018) 144-152, https://doi.org/10.1016/j.chemgeo.2018.07.036. 
  2. A.A. Orlov, A.A. Ushakov, V.P. Sovach, R.V. Malyugin, Mathematical modeling of nonstationary separation processes in a cascade of gas centrifuges for separation of tungsten isotopes, J. Eng. Phys. Thermophys. 91 (2018) 565-573, https://doi.org/10.1007/s10891-018-1777-0. 
  3. A.N. Cheltsov, N.S. Babaev, L.Y. Sosnin, Y.D. Shipilov, A.V. Bespalov, P.V. Mochalov, V.K. Khamylov, Centrifugal enrichment of sulfur isotopes, J. Radioanal. Nucl. Chem. 299 (2014) 989-993.  https://doi.org/10.1007/s10967-013-2650-4
  4. Y. Cao, S. Zeng, Z. Lei, C. Ying, Study of a nonstationary separation method with gas centrifuge cascade, Separ. Sci. Technol. 39 (2004) 3405-3429, https://doi.org/10.1081/SS-200034331. 
  5. M. Imani, A.R. Keshtkar, A. Rashidi, J.K. Sabet, A. Noroozi, Investigation on the effect of holdup and cascade shape in NFSW cascades, Prog. Nucl. Energy 119 (2020), 103182, https://doi.org/10.1016/j.pnucene.2019.103182. 
  6. S. Zeng, C. Ying, Separating isotope components of small abundance, Separ. Sci. Technol. 37 (2002) 3577-3598, https://doi.org/10.1081/SS-120014445. 
  7. S. Zeng, M. Zhou, C. Ying, Theoretical and experimental study of a nonstationary isotope separation process in a gas centrifuge cascade, Separ. Sci. Technol. 38 (2003) 2375-2394, https://doi.org/10.1081/SS-120022278. 
  8. F. Ezazi, M. Imani, J. Safdari, M. Mallah, S.L. Mirmohammadi, An application of nature-inspired paradigms in the overall optimization of square and squared-off cascades to separate a middle isotope of tellurium, Ann. Nucl. Energy 171 (2022), 109033, https://doi.org/10.1016/j.anucene.2022.109033. 
  9. M. Imani, M. Aghaie, M. Adelikhah, Introducing optimum parameters of separation cascades for 123Te using GWO based on ANN, Ann. Nucl. Energy 163 (2021), 108545, https://doi.org/10.1016/j.anucene.2021.108545. 
  10. S. Khooshechin, F. Mansourzadeh, M. Imani, J. Safdari, M.H. Mallah, Optimization of flexible square cascade for high separation of stable isotopes using enhanced PSO algorithm, Prog. Nucl. Energy 140 (2021), 103922, https://doi.org/10.1016/j.pnucene.2021.103922. 
  11. A.Y. Smirnov, G.A. Sulaberidze, V.D. Borisevich, S. Zeng, D. Jiang, Transient processes in Q-cascades for separation of multicomponent mixtures, Chem. Eng. Sci. 127 (2015) 418-424, https://doi.org/10.1016/j.ces.2014.12.063. 
  12. M. Imani, M. Aghaie, A. Keshtkar, Numerical simulation of hydrodynamic performance of taper cascades in transient conditions, Ann. Nucl. Energy 176 (2022), 109287, https://doi.org/10.1016/j.anucene.2022.109287. 
  13. S. Zeng, C. Ying, Transient process in gas centrifuge cascades for separation of multicomponent isotope mixtures, Separ. Sci. Technol. 36 (2001) 3439-3457, https://doi.org/10.1081/SS-100107913. 
  14. S. Zeng, C. Ying, A robust and efficient calculation procedure for determining concentration distribution of multicomponent mixtures, Separ. Sci. Technol. 35 (2000) 613-622, https://doi.org/10.1081/SS-100100179.