DOI QR코드

DOI QR Code

Study on three-dimensional numerical simulation of shell and tube heat exchanger of the surface ship under marine conditions

  • Yi Liao (Naval University of Engineering) ;
  • Qi Cai (Naval University of Engineering) ;
  • Shaopeng He (Xi'an Jiaotong University) ;
  • Mingjun Wang (Xi'an Jiaotong University) ;
  • Hongguang Xiao (Naval University of Engineering) ;
  • Zili Gong (Wuhan 2nd Ship Design and Research Institute) ;
  • Cong Wang (Wuhan 2nd Ship Design and Research Institute) ;
  • Zhen Jia (Wuhan 2nd Ship Design and Research Institute) ;
  • Tangtao Feng (Wuhan 2nd Ship Design and Research Institute) ;
  • Suizheng Qiu (Xi'an Jiaotong University)
  • Received : 2022.10.21
  • Accepted : 2022.12.17
  • Published : 2023.04.25

Abstract

Shell-and-tube heat exchanger (STHX) is widely used by virtue of its simple structure and high reliability, especially in a space-constrained surface ship. For the STHX of the surface ship, roll, pitch and other motion of the ship will affect the heat transfer performance, resistance characteristics and structural strength of the heat exchanger. Therefore, it is urgent to carry out numerical simulation research on three-dimensional thermal hydraulic characteristics of surface ship STHX under the marine conditions. In this paper, the numerical simulation of marine shell and tube heat exchanger of surface ship was carried out using the porous media model. Firstly, the mathematical physical model and numerical method are validated based on the experimental data of a marine engine cooling water shell and tube heat exchanger. The simulation results are in good agreement with the experimental results. The prediction errors of pressure drop and heat transfer are less than 10% and 1% respectively. The effect of marine conditions on the heat transfer characteristics of the heat exchanger is investigated by introducing the additional force model of marine condition to evaluate the effect of different motion parameters on the heat transfer performance of the heat exchanger. This study could provide a reference for the optimization of marine heat exchanger design.

Keywords

References

  1. L. Xu, Z. Huang, B. Tang, et al., Numerical simulation of the flow and phase change characteristics of ice particles-seawater two-phase flow in heat exchanger of polar ship, in: 2017 4th International Conference on Transportation Information and Safety (ICTIS), 2017, pp. 468-474.
  2. C. Ezgi, N. Ozbalta, I. Girgin, Thermohydraulic and thermoeconomic performance of a marine heat exchanger on a naval surface ship, Appl. Therm. Eng. 64 (1-2) (2014) 413-421. https://doi.org/10.1016/j.applthermaleng.2013.12.061
  3. H. Li, V. Kottke, Visualization and determination of local heat transfer co-efficients in shell-and-tube heat exchangers for staggered tube arrangement by mass transfer measurements, Exp. Therm. Fluid Sci. 17 (3) (1998) 210-216. https://doi.org/10.1016/S0894-1777(97)10064-4
  4. H. Li, V. Kottke, Effect of baffle spacing on pressure drop and local heat transfer in shell-and-tube heat exchangers for staggered tube arrangement, Int. J. Heat Mass Tran. 41 (10) (1998) 1303-1311. https://doi.org/10.1016/S0017-9310(97)00201-9
  5. J. Lutcha, J. Nemcansky, Performance improvement of tubular heat exchangers by helical baffles, Chem. Eng. Res. Des. 68 (A3) (1990).
  6. S. Zeyninejad Movassag, F. Nemati Taher, K. Razmi, et al., Tube bundle replacement for segmental and helical shell and tube heat exchangers: performance comparison and fouling investigation on the shell side, Appl. Therm. Eng. 51 (1) (2013) 1162-1169. https://doi.org/10.1016/j.applthermaleng.2012.10.025
  7. J.-F. Yang, Y.-S. Lin, H.-B. Ke, et al., Investigation on combined multiple shell-pass shell-and-tube heat exchanger with continuous helical baffles, Energy 115 (2016) 1572-1579. https://doi.org/10.1016/j.energy.2016.05.090
  8. G.V. Teja, K.N. Rao, Numerical investigation on heat transfer and fluid flow of shell-side for shell and tube heat exchanger with hexagonal vent baffle by using CFD, Int. J. Mech. Eng. Technol. 8 (5) (2017) 995-1009.
  9. H. Bayram, G. Sevilgen, Numerical investigation of the effect of variable baffle spacing on the thermal performance of a shell and tube heat exchanger, Energies 10 (8) (2017) 1156.
  10. N. Li, J. Chen, T. Cheng, et al., Analysing thermal-hydraulic performance and energy efficiency of shell-and-tube heat exchangers with longitudinal flow based on experiment and numerical simulation, Energy 202 (2020), 117757.
  11. H. Darcy, Les fontaines publiques de la ville de Dijon: exposition et application, Victor Dalmont, Paris, France, 1856.
  12. M. Prithiviraj, M. Andrews, Three dimensional numerical simulation of shell-and-tube heat exchangers. Part I: foundation and fluid mechanics, Numer. Heat Tran., Part A: Applications 33 (8) (1998) 799-816. https://doi.org/10.1080/10407789808913967
  13. M. Prithiviraj, M. Andrews, Three-dimensional numerical simulation of shell-and-tube heat exchangers. Part II: heat transfer, Numer. Heat Tran., Part A: Applications 33 (8) (1998) 817-828. https://doi.org/10.1080/10407789808913968
  14. M. Wang, Y. Wang, W. Tian, et al., Recent progress of CFD applications in PWR thermal hydraulics study and future directions, Ann. Nucl. Energy 150 (2021), 107836.
  15. C. Zeng, M. Wang, G. Wu, et al., Numerical study on the enhanced heat transfer characteristics of steam generator with axial economizer, Int. J. Therm. Sci. 182 (2022), 107794.
  16. D. Mu, M. Wang, J. Zhang, et al., Migration-deposition coupling characteristics and influence of corrosion products on heat transfer in steam generators, Appl. Therm. Eng. 211 (2022), 118507.
  17. X. Zhao, M. Wang, G. Wu, et al., The development of high fidelity Steam Generator three dimensional thermal hydraulic coupling code: STAF-CT, Nucl. Eng. Technol. 53 (3) (2021) 763-775. https://doi.org/10.1016/j.net.2020.07.043
  18. Jinxiang Sun, Ruibo Zhang, Mingjun Wang, Jing Zhang, Suizheng Qiu, Wenxi Tian, G.H. Su, Multi-objective optimization of helical coil steam generator in high temperature gas reactors with genetic algorithm and response surface method, Energy 259 (2022), 124976.
  19. T. Cong, R. Zhang, W. Tian, et al., Development and preliminary validation of a steam generator 3D thermohydraulics analysis code STAF, Nucl. Eng. Des. 298 (2016) 135-148. https://doi.org/10.1016/j.nucengdes.2015.12.027
  20. X. Wang, M. Wang, G. Wu, et al., Local effect model development for the steam generator three dimensional thermal hydraulics analysis code, Ann. Nucl. Energy 136 (2020), 107020.
  21. Irfan Khan, Mingjun Wang, Yapei Zhang, Wenxi Tian, Guanghui Su, Suizheng Qiu, Two-phase bubbly flow simulation using CFD method: a review of models for interfacial forces, Prog. Nucl. Energy 125 (2020), 103360.
  22. X. Zhao, M. Wang, C. Chen, et al., Three-dimensional study on the hydraulic characteristics under the steam generator (SG) tube plugging operations for AP1000, Prog. Nucl. Energy 112 (2019) 63-74. https://doi.org/10.1016/j.pnucene.2018.10.016
  23. S. Patankar, D. Spalding, A calculation procedure for transient and steady state behavior of shell-and-tube heat exchangers, in: N.H. Afgan, E.U. Schlunder (Eds.), Heat Exchanger Design Theory Source Book, McGraw-Hill, New York, US, 1974.
  24. S. He, M. Wang, W. Tian, et al., Development of an OpenFOAM solver for numerical simulations of shell-and-tube heat exchangers based on porous media model, Appl. Therm. Eng. 210 (2022), 118389.
  25. O. Nylund, Hydrodynamic and Heat Transfer Measurements on a Full-Scale Simulated 36-rod BHWR Fuel Element with Non-uniform Axial and Radial Heat Flux Distribution, ASEA-ATOM, Vasteras, Sweden, 1970.
  26. O. Nylund, K.M. Becker, R. Eklund, et al., Hydrodynamic and Heat Transfer Measurements on a Full-Scale Simulated 36-rod Marviken Fuel Element with Non-uniform Radial Heat Flux Distribution, ASEA-ATOM, Vasteras, Sweden, 1968.
  27. J. Kim, T. Sibilli, M.Y. Ha, et al., Compound porous media model for simulation of flat top U-tube compact heat exchanger, Int. J. Heat Mass Tran. 138 (2019) 1029-1041. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.116
  28. W.H. MacAdams, Heat Transmission, McGraw Hill, New York, USA, 1954.
  29. E. Grimison, Correlation and utilization of new data on flow resistance and heat transfer for cross flow of gases over tube banks, Transactions of ASME 59 (7) (1937) 583-594. https://doi.org/10.1115/1.4020557
  30. F.W. Dittus, L.M.K. Boelter, Heat transfer in automobile radiators of the tubular type, Int. Commun. Heat Mass Tran. 12 (1) (1985) 3-22. https://doi.org/10.1016/0735-1933(85)90003-X
  31. D.A. Dingee, W. Bell, J. Chastain, S.L. Fawcett, Heat Transfer from Parallel Rods in Axial Flow, Battelle Memorial Inst., Columbus, 1955 (OH, USA).
  32. O. Dwyer, T. Sheehan, J. Weisman, F.L. Horn, R.T. Schomer, Cross flow of water through a tube bank at Reynolds numbers up to a million, Ind. Eng. Chem. 48 (10) (1956) 1836-1846. https://doi.org/10.1021/ie50562a028
  33. A.K. Singhal, L.W. Keeton, A.J. Przekwas, et al., ATHOS3: A Computer Program for Thermal-Hydraulic Analysis of Steam Generators. Volume 1: Mathematical and Physical Models and Method of Solution, Cham of North America Incorporated, Palo Alto, CA, USA, 1984.