DOI QR코드

DOI QR Code

STUDY OF P-CURVATURE TENSOR IN THE SPACE-TIME OF GENERAL RELATIVITY

  • 투고 : 2022.11.07
  • 심사 : 2023.01.05
  • 발행 : 2023.06.01

초록

The P-curvature tensor has been studied in the space-time of general relativity and it is found that the contracted part of this tensor vanishes in the Einstein space. It is shown that Rainich conditions for the existence of non-null electro variance can be obtained by P𝛼𝛽. It is established that the divergence of tensor G𝛼𝛽 defined with the help of P𝛼𝛽 and scalar P is zero, so that it can be used to represent Einstein field equations. It is shown that for V4 satisfying Einstein like field equations, the tensor P𝛼𝛽 is conserved, if the energy momentum tensor is Codazzi type. The space-time satisfying Einstein's field equations with vanishing of P-curvature tensor have been considered and existence of Killing, conformal Killing vector fields and perfect fluid space-time has been established.

키워드

과제정보

Authors express their sincere thanks to the anonymous reviewer(s) and the Editor for proving their valuable suggestions towards the improvement of this work.

참고문헌

  1. Z. Ahsan, On a geometrical symmetry of the space-time of general relativity, Bull Cal. Math Soc. 97 (2005), no. 3, 191-200.
  2. Z. Ahsan and M. Ali, Curvature tensor for the spacetime of general relativity, Int. J. Geom. Methods Mod. Phys. 14 (2017), no. 5, 1750078.
  3. G. Ayar and S. K. Chaubey, M-projective curvature tensor over cosymplectic manifolds, Differ. Geom. Dyn. Syst. 21 (2019), 23-33.
  4. S. K. Chaubey and Y. J. Suh, Characterizations of Lorentzian manifolds, J. Math. Phys. 63 (2022), no. 6, Paper No. 062501.
  5. S. K. Chaubey, Certain results on N(k)-quasi Einstein manifolds, Afr. Mat. 30 (2019), 113-127. https://doi.org/10.1007/s13370-018-0631-z
  6. S. K. Chaubey, Characterization of perfect fluid spacetimes admitting gradient η-Ricci and gradient Einstein solitons, J. Geom. Phys. 162 (2021), 104069.
  7. S. K. Chaubey and Y. J. Suh, Generalized Ricci recurrent spacetimes and GRW spacetimes, Int. J. Geom. Methods Mod. Phys. 18 (2021), no. 13, Paper No. 2150209.
  8. S. K. Chaubey, Y. J. Suh, and U. C. De, Characterizations of the Lorentzian manifolds admitting a type of semi-symmetric metric connection, Anal. Math. Phys. 10 (2020), no. 4, Paper No. 61.
  9. S. K. Chaubey, Generalized Robertson-Walker Space-Times with W1-Curvature Tensor, J Phys Math 10 (2019), 303.
  10. U. C. De, S. K. Chaubey, and S. Shenawy, Perfect fluid spacetimes and Yamabe solitons, J. Math. Phys. 62 (2021), no. 3, Paper No. 032501.
  11. S. K. Chaubey and R. H. Ojha, On the m-projective curvature tensor of a Kenmotsu manifold, Differ. Geom. Dyn. Syst. 12 (2010), 52-60.
  12. S. K. Chaubey, Some properties of LP-Sasakian manifolds equipped with m-projective curvature tensor, Bull. Math. Anal. Appl. 3 (2011), no. 4, 50-58.
  13. S. K. Chaubey, Existence of N(k)-quasi Einstein manifolds, Facta Univ. Ser. Math. Inform. 32 (2017), no. 3, 369-385.
  14. S. K. Chaubey, K. K. Bhaishya, and M. D. Siddiqi, Existence of some classes of N(k)-quasi Einstein manifolds, Bol. Soc. Parana. Mat. 39 (2021), no. 5, 145-162. https://doi.org/10.5269/bspm.41450
  15. S. K. Chaubey, On weakly m-projectively symmetric manifolds, Novi Sad J. Math. 42 (2012), no. 1, 67-79.
  16. S. K. Chaubey, S. Prakash, and R. Nivas, Some properties of m-projective curvature tensor in Kenmotsu manifolds, Bull. Math. Anal. Appl. 4 (2012), no. 3, 48-56.
  17. S. K. Chaubey, J. W. Lee, and S. K. Yadav, Riemannian manifolds with a semi-symmetric metric P-connection, J. Korean Math. Soc. 56 (2019), no. 4, 1113-1129.
  18. S. K. Chaubey and S. K. Yadav, W-semisymmetric generalized Sasakian-space-forms, Adv. Pure Appl. Math. 10 (2019), no. 4, 427-436. https://doi.org/10.1515/apam-2018-0032
  19. A. Derdzi'nski and C. L. Shen, Codazzi tensor fields, curvature and Pontryagin forms, Proc. London Math. Soc. 47 (1983), 15-26. https://doi.org/10.1112/plms/s3-47.1.15
  20. A. Haseeb, M. Bilal, S. K. Chaubey, and M. N. I. Khan, Geometry of indefinite Kenmotsu manifolds as η-Ricci-Yamabe solitons, Axioms 11 (2022), 461.
  21. A. Haseeb, M. Bilal, S. K. Chaubey, and A. A. H. Ahmadini, ζ-Conformally Flat LP-Kenmotsu Manifolds and Ricci-Yamabe Solitons, Mathematics 11 (2023), no. 1, 212.
  22. D. Kallingas, P. Wesson, and C. W. F. Everitt, Flat F RW-models with variable G and Λ, Gen. Relativity Gravit. 24 (1992), no. 4, 351-357. https://doi.org/10.1007/BF00760411
  23. S. Mallick and U. C. De, Spacetimes admitting W2-curvature tensor, Int. J. Geom. Methods Mod. Phys. 11 (2014), no. 4, 1450030.
  24. K. Matsumoto, S. Ianus, and I. Mihai, On P-Sasakian manifolds which admit certain tensor fields, Publ Math-Debrecen 33 (1986), no. 3-4, 199-204.
  25. C. W. Misner and J. A. Wheeler, Classical physics as geometry: Gravitation, electromagnetism, unquantified charge, and mass as properties of curved empty space, Ann. Physics 2 (1957), 525-603. https://doi.org/10.1016/0003-4916(57)90049-0
  26. G. P. Pokhariyal, Curvature tensor on A-Einstein Sasakian manifolds, Balkan J. Geom. Appl. 6 (2001), no. 1, 45-50.
  27. G. P. Pokhariyal, Curvature tensors in Riemannian manifold II, Proc. Indian Acad. Sci. Sect. A 79 (1974), 105-110. https://doi.org/10.1007/BF03046662
  28. G. P. Pokhariyal, Study of P-curvature tensor and other related tensors, Differ. Geom. Dyn. Syst. 22 (2020), 202-207.
  29. G. P. Pokhariyal and R. S. Mishra, Curvature tensors and their relativistic significance, Yokohama Math. Journal 18 (1970), 105-108.
  30. G. Y. Rainich, Electrodynamics in the general relativity theory, Trans. Amer. Math. Soc. 27 (1925), 106-136. https://doi.org/10.1090/S0002-9947-1925-1501302-6
  31. S. Shenawy and B. Unal, The W2-curvature tensor on warped product manifolds and applications, Int. J. Geom. Methods Mod. Phys. 13 (2016), no. 7, 1650099.
  32. M. D. Siddiqi, S. K. Chaubey, and M. N. I. Khan, f(R, T)-Gravity Model with Perfect Fluid Admitting Einstein Solitons, Mathematics 10 (2022), no. 1, 82.
  33. K. P. Singh, L. Radhakrishna, and R. Sharan, Electromagnetic fields and cylindrical symmetry, Ann. Physics 32 (1965), 46-68. https://doi.org/10.1016/0003-4916(65)90059-X
  34. H. Stephani, General relativity-An introduction to the theory of gravitational field, Cambridge University Press, 1982.
  35. Venkatesha and B. Shanmukha, W2-curvature tensor on generalized Sasakian space forms, Cubo 20 (2018), no. 1, 17-29. https://doi.org/10.4067/S0719-06462018000100017
  36. S. K. Yadav, S. K. Chaubey, and D. L. Suthar, Some results of η-Ricci solitons on (LCS)n-manifolds, Surv. Math. Appl. 13 (2018), 237-250.
  37. F. O. Zengin, On Riemannian manifolds admitting W2-curvature tensor, Miskolc Math. Notes 12 (2011), no. 2, 289-296. https://doi.org/10.18514/MMN.2011.332