Acknowledgement
본 논문은 방위사업청과 국방기술진흥연구소가 지원하는 선박해양플랜트연구소의 연구과제인 "잠수함 펌프젯 설계기술(과제번호 20-102-D00-009)"의 연구 결과 중 일부임.
References
- International Maritime Organization (IMO) "The Fourth IMO Greenhouse Gas Study 2020," IMO, Rep., 2020.
- International Maritime Organization (IMO) "Adoption of the code on noise levels on board ships," IMO, ANNEX 1, Resolution MSC.337(91), 2012.
- International Maritime Organization (IMO) "Adoption of amendments to the international convention for the safety of life at sea, 1974, as amended," IMO, ANNEX 2, Resolution MSC.338(91), 2012.
- International Maritime Organization (IMO) "Guidelines for the reduction of underwater noise from commercial shipping to address adverse impacts on marine life," IMO, MEPC.1/Circ.883, 2014.
- M. Altosole, M. Figari, M. Martelli, and G. Orru, "Propulsion control optimisation for emergency manoeuvres of naval vessels," Proc. 11th INEC, 631-640 (2012).
- J. Jang, D. Kim, M. Kim, and J. Oh, "Development of naval ship propulsion system simulator for CODLOG based ECS verification" (in Korean), JKIICE, 21, 1796-1807 (2017).
- K. Jun, Y. Hwan, and K. Hyoung, "CFD analysis for air cooling stack of hybrid residual heat removal system using air and sea water for ship SMR" (in Korean), Proc. KSFM, 337-338 (2020).
- B. Allotta, L. Pugi, F. Bartolini, A. Ridolfi, R. Costanzi, N. Monni, and J. Gelli, "Preliminary design and fast prototyping of an autonomous underwater vehicle propulsion system," Proc. IMechE part M J. Eng. Marit. Environ. 229, 248-272 (2015).
- G. Pan, L. Lu, and P. K. Sahoo, "Numerical simulation of unsteady cavitating flows of pumpjet propulsor," Ships and Offshore Struc. 11, 64-74 (2016).
- H. Li, Q. Huang, G. Pan, and X. Dong, "The transient prediction of a pre-swirl stator pump-jet propulsor and a comparative study of hybrid RANS/LES simulations on the wake vortices," Ocean Eng. 203, 107224 (2020).
- C. Qiu, G. Pan, Q. Huang, and Y. Shi, "Numerical analysis of unsteady hydrodynamic performance of pump-jet propulsor in oblique flow," Int. J. Nav. Archit. Ocean Eng. 12, 102-115 (2020). https://doi.org/10.1016/j.ijnaoe.2019.10.001
- K. Kim, I. Song, and S. Choi, "Design technique of post swirl stator in container vessels by CFD," J. Soc. Nav. Archit. Kr. 44, 93-100 (2007).
- B. W. McCormick and J. J. Eisenhuth, "Design and performance of propellers and pumpjets for underwater propulsion," AIAA, 1, 2348-2354 (1963). https://doi.org/10.2514/3.2065
- Ch. Suryanarayana, B. Satyanarayana, K. Ramji, and A. Saiju, "Experimental evaluation of pumpjet propulsor for an axisymmetric body in wind tunnel," Int. J. Nav. Archit. Ocean Eng. 2, 24-33 (2010). https://doi.org/10.2478/IJNAOE-2013-0016
- Ch. Suryanarayana, B. Satyanarayana, and K. Ramji, "Performance evaluation of an underwater body and pumpjet by model testing in cavitation tunnel," Int. J. Nav. Archit. Ocean Eng. 2, 57-67 (2010). https://doi.org/10.2478/IJNAOE-2013-0020
- Ch. Suryanarayana, B. Satyanarayana, K. Ramji, and M. N. Rao, "Cavitation studies on axi-symmetric underwater body with pumpjet propulsor in cavitation tunnel," Int. J. Nav. Archit. Ocean Eng. 2, 185-194 (2010). https://doi.org/10.2478/IJNAOE-2013-0035
- E. P. Bruce, W. S. Gearhart, J. R. Ross, and A. L. Treaster, "The design of pumpjets for hydrodynamic propulsion," Fluid Mech. Acoust. Design of Turbomach. Pt. 2, 304, 795-839 (1974).
- O. Furuya and W. L. Chiang, "A new pumpjet design theory," Honeywell Inc Hopkins MN, ADA201353 Tech. Rep., 1988.
- G. Wang and X. Liu, "A potential based panel method for prediction of steady and unsteady performances of ducted propeller with stators," J. Ship Mech. 11, 333-340 (2007).
- D. Qin, G. Pan, S. Lee, Q. Huang, and Y. Shi, "Underwater radiated noise reduction technology using saw-tooth duct for pumpjet propulsor," Ocean Eng. 188, 106228 (2019).
- Y. Sun, W. Liu, and T. Li, "Numerical investigation on noise reduction mechanism of serrated trailing edge installed on a pump-jet duct," Ocean Eng. 191, 106489 (2019).
- Z. Rao, W. Li, and C. Yang, "Simulation of unsteady interaction forces on a ducted propeller with pre-swirl stators," Proc. SMP'13, 149-155, (2013).
- J. W. Ahn, H. S. Seol, H. S, Jung, and Y. H. Park, "Study of the open-water test and analysis for a pumpjet propulsor in LCT" (in Korean), J. Soc. Nav. Archit. Kr. 59, 149-156 (2022).
- I. R. Park, J. I. Kim, K. S. Kim, J. W. Ahn, Y. H. Park, and M. S. Kim, "Numerical analysis of the wake of a surface ship model mounted in KRISO large cavitation tunnel" (in Korean), J. Soc. Nav. Archit. Kr. 53, 494-502 (2016). https://doi.org/10.3744/SNAK.2016.53.6.494
- G. H. Schnerr and J. Sauer, "Physical and numerical modeling of unsteady cavitation dynamics," Proc. ICMF 1-12 (2001).
- C. Y. Byeon, J. I. Kim, I. R. Park, and H. S. Seol, "Resistance and self-propulsion simulations for the DARPA suboff submarine by using RANS method" (in Korean), J. Comput. Fluids Eng. Kr. 23, 36-46 (2018). https://doi.org/10.6112/kscfe.2018.23.3.036
- X. Wang and K. Walters, "Computational analysis of marine-propeller performance using transition-sensitive turbulence modeling," J. Fluids Eng. 134, 071107 (2012).
- G. Ku, S. Ryu, and C. Cheong, "Numerical investigation into cavitation flow noise of hydrofoil using quadrupole-corrected Ffowcs Williams and Hawkings equation" (in Korean), J. Acoust. Soc. Kr. 37 (2018).
- B. A. Singer, D. P. Lockard, and G. M. Lilley, "Hybrid acoustic predictions," Comput. Math. with Appl. 46, 647-669 (2003). https://doi.org/10.1016/S0898-1221(03)90023-X
- F. Farassat, "Derivation of formulations 1 and 1A of Farassat," NASA Langley Research Center Hampton, 2007.
- J. Ha, G. Ku, J. Cho, C. Cheong, and H. Seol, "Numerical comparative investigation on blade tip vortex cavitation and cavitation noise of underwater propeller with compressible and incompressible flow solvers" (in Korean), J. Acoust. Soc. Kr. 40, 261-269 (2021).
- G. Ku, J. Cho, C. Cheong, and H. Seol, "Numerical investigation of tip-vortex cavitation noise of submarine propelles using hybrid computational hydro-acoustic approach," Ocean Eng. 238, 109693 (2021).
- K. S. Brentner and F. Farassat, "An analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces," AIAA, 36, 1379-1386 (2012). https://doi.org/10.2514/3.13979