과제정보
본 연구는 행정안전부의 재원으로 방역연계범부처감염병연구개발 사업단의 지원을 받아 수행되었습니다(과제고유번호 : 20016180, 100 %).
참고문헌
- World Health Organization Official COVID-19 info Official Website, https://www.who.int/covid-19, (Last viewed May 23, 2023).
- L. Orlandic, T. Teijeiro, and D. Atienza, "The COUGHVID crowdsourcing dataset, a corpus for the study of large-scale cough analysis algorithms," Sci. Data, 8, 1-10 (2021).
- N. K. Sharma, P. Krishnan, R. Kumar, S. Ramoji, S. R. Chetupalli, N. R., P. K. Ghosh, and S. Ganapathy, "Coswara - a database of breathing, cough, and voice sounds for COVID-19 diagnosis," Proc. Interspeech, 4811-4815 (2020).
- D. T. Pizzo and S. Esteban, "IATos: AI-powered prescreening tool for COVID-19 from cough audio samples," arXiv:2104.13247 (2021).
- A. Mallol-Ragolta, H. Cuesta, E. Gomez, and B. Schuller, "Multi-type outer product-based fusion of respiratory sounds for detecting COVID-19," Proc. Interspeech, 2163-2167 (2022).
- V. S. Nallanthighal, A. Harma, and H. Strik. "COVID-19 detection based on respiratory sensing from speech," Proc. Interspeech, 2498-2502 (2022).
- Y. Gong, Y.-A. Chung, and J. Glass, "AST: audio spectrogram transformer," Proc. Interspeech, 571-575 (2021).
- N. C. Ristea, R. T. Ionescu, and F. S. Khan, "SepTr: separable transformer for audio spectrogram processing," Proc. Interspeech, 4103-4107 (2022).
- N. K. Sharma, S. R. Chetupalli, D. Bhattacharya, D. Dutta, P. Mote, and S. Ganapathy, "The second DiCOVA challenge: Dataset and performance analysis for diagnosis of COVID-19 using acoustics," Proc. ICASSP, 556-560 (2022).
- X.-Y. Chen, Q.-S. Zhu, J. Zhang, and L.-R. Dai, "Supervised and self-supervised pretraining based covid-19 detection using acoustic breathing /cough/speech signals," Proc. ICASSP, 561-565 (2022).
- T. Dang, T. Quinnell, and C. Mascolo, "Exploring semi-supervised learning for audio-based COVID-19 detection using FixMatch," Proc. Interspeech, 2468-2472 (2022).
- A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, "An image is worth 16×16 words: Transformers for image recognition at scale," Proc. ICLR, 1-22 (2021).
- K. Lee and C. H. Lee, "Abnormal signal detection based on parallel autoencoders" (in Korean), J. Acoust. Soc. Kr. 40, 337-346 (2021).