DOI QR코드

DOI QR Code

Solidification of uranium tailings using alkali-activated slag mixed with natural zeolite

  • Fulin Wang (School of Resource & Environment and Safety Engineering, University of South China) ;
  • Min Zhou (School of Resource & Environment and Safety Engineering, University of South China) ;
  • Cheng Chen (School of Resource & Environment and Safety Engineering, University of South China) ;
  • Zhengping Yuan (School of Resource & Environment and Safety Engineering, University of South China) ;
  • Xinyang Geng (School of Resource & Environment and Safety Engineering, University of South China) ;
  • Shijiao Yang (School of Resource & Environment and Safety Engineering, University of South China)
  • 투고 : 2022.04.07
  • 심사 : 2022.10.13
  • 발행 : 2023.02.25

초록

Cemented uranium tailings backfill created from alkali-activated slag (CUTB) is an effective method of disposing of uranium tailings. Using some environmental functional minerals with ion exchange, adsorption, and solidification abilities as backfill modified materials may improve the leaching resistance of the CUTB. Natural zeolite, which has good ion exchange and adsorption characteristics, is selected as the backfill modified material, and it is added to the backfill materials with cementitious material proportions of 4%, 8%, 12%, and 16% to prepare CUTB mixtures with environmental functional minerals. After the addition of natural zeolite, the uniaxial compressive strength (UCS) of the CUTB decreases, but the leaching resistance of the CUTB increases. When the natural zeolite content is 12%, the UCS reaches the minimum value of 8.95 MPa, and the concentration of uranium in the leaching solution is 0.28-8.07 mg/L, the leaching rate R42 is 9.61×10-7 cm/d, and cumulative leaching fraction P42 is 8.53×10-4 cm, which shows that the alkali-activated slag cementitious material has a good curing effect on the CUTB, and the addition of environmental functional minerals helps to further improve the leaching resistance of the CUTB, but it reduces the UCS to an extent.

키워드

과제정보

This study was supported by the National Natural Science Foundation of China (Grant No. 51904154), Natural Science Foundation of Hunan Province (Grant No. 2020JJ5491).

참고문헌

  1. World Nuclear Association, Uranium Mining Overview, 2020. https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/mining-ofuranium/uranium-mining-overview.aspx.
  2. M. Ballini, C. Chautard, J. Nos, V. Phrommavanh, C. Beaucaire, C. Besancon, A. Boizard, M. Cathelineau, C. Peiffert, T. Vercouter, E. Vors, M. Descostes, A multi-scalar study of the long-term reactivity of uranium mill tailings from Bellezane site (France), J. Environ. Radioactiv. 218 (C) (2020), 106223.
  3. F.L. Wang, G.L. Chen, L. Ji, Z.P. Yuan, Preparation and mechanical properties of cemented uranium tailing backfill based on alkali-activated slag, Adv. Mater. Sci. Eng. (2020), https://doi.org/10.1155/2020/6345206.
  4. D. Debasis, T. Sreenivas, K.D. Gautam, P. Sandeep, Paste backfill technology: essential characteristics and assessment of its application for mill rejects of uranium ores, T. Indian Metals. 70 (2) (2017) 487-495. https://doi.org/10.1007/s12666-016-0999-0
  5. M.T. Zhang, C.H. Yang, M. Zhao, K. Yang, R. Shen, Y.J. Zheng, Immobilization potential of Cr(VI) in sodium hydroxide activated slag pastes, J. Hazard. Mater. 321 (5) (2017) 281-289. https://doi.org/10.1016/j.jhazmat.2016.09.019
  6. H.X. Chen, H.H. Yuan, L.Q. Mao, M.Z. Hashmi, F.N. Xu, X.J. Tang, Stabilization/solidification of chromium-bearing electroplating sludge with alkali-activated slag binders, Chemosphere 240 (2020), 124885.
  7. M.M. Alonso, A. Pasko, C. Gasco, J.A. Suarez, O. Kovalchuk, P. Krivenko, F. Puertas, Radioactivity and Pb and Ni immobilization in SCM-bearing alkali-activated matrices, Constr. Build. Mater. 159 (2018) 745-754. https://doi.org/10.1016/j.conbuildmat.2017.11.119
  8. H.A. Abdel-Gawwad, S.A. Mohamed, M.S. Mohammed, Recycling of slag and lead-bearing sludge in the cleaner production of alkali activated cement with high performance and microbial resistivity, J. Clean. Prod. 220 (2019) 568-580. https://doi.org/10.1016/j.jclepro.2019.02.144
  9. J. Kiventera, H. Sreenivasan, C. Cheeseman, P. Kinnunen, M. Illikainen, Immobilization of sulfates and heavy metals in gold mine tailings by sodium silicate and hydrated lime, J. Environ. Chem. Eng. 6 (5) (2018) 6530-6536. https://doi.org/10.1016/j.jece.2018.10.012
  10. D.Q. Wang, Q. Wang, S.Y. Zhuang, J. Yang, Evaluation of alkali-activated blast furnace ferronickel slag as a cementitious material: reaction mechanism, engineering properties and leaching behaviors, Constr. Build. Mater. 188 (2018) 860-873. https://doi.org/10.1016/j.conbuildmat.2018.08.182
  11. J. Yliniemi, J. Pesonen, M. Tiainen, M. Illikainen, Alkali activation of recovered fuelebiofuel fly ash from fluidised-bed combustion: stabilisation/solidification of heavy metals, Waste. Manage. 43 (5) (2015) 273-282. https://doi.org/10.1016/j.wasman.2015.05.019
  12. P.P. Zhang, F. Muhammad, L. Yu, M. Xia, H.R. Lin, X. Huang, B.Q. Jiao, Y.C. Shiau, D.W. Li, Self-cementation solidification of heavy metals in lead-zinc smelting slag through alkali-activated materials, Constr. Build. Mater. 249 (2020), 118756.
  13. V. Niels, I.R. Ion, C. Robert, S. Pieter, D. Jan, P. Yiannis, S. Sonja, S. Wouter, Alkali-activated materials for radionuclide immobilisation and the effect of precursor composition on Cs/Sr retention, J. Nucl. Mater. 510 (2018) 575-584. https://doi.org/10.1016/j.jnucmat.2018.08.045
  14. Q.Z. Tian, S. Nakama, K. Sasaki, Immobilization of cesium in fly ash-silica fume based geopolymers with different Si/Al molar ratios, Sci. Total. Environ. 687 (2019) 1127e1137.
  15. M. Komljenovic, G. Tanasijevic, N. Dzunuzovic, J.L. Provis, Immobilization of cesium with alkali-activated blast furnace slag, J. Hazard. Mater. 388 (2020), 121765-121765. https://doi.org/10.1016/j.jhazmat.2019.121765
  16. K. Gijbels, S. Landsberger, P. Samyn, R.I. Iacobescu, Yiannis Pontikes, Sonja Schreurs, W. Schroeyers, Radiological and non-radiological leaching assessment of alkali-activated materials containing ground granulated blast furnace slag and phosphogypsum, Sci. Total Environ. 660 (2019) 1098-1107. https://doi.org/10.1016/j.scitotenv.2019.01.089
  17. S.K. Zhou, J.L. Li, L.S. Rong, J. Xiao, Y.J. Liu, Y. Duan, L.P. Chu, Q. Li, L. Yang, Immobilization of uranium soils with alkali-activated coal gangue-based geopolymer, J. Radioanal. Nucl. Chem. 329 (2021) 1155-1166. https://doi.org/10.1007/s10967-021-07812-x
  18. F.L. Jiang, J.T. Guo, X.L. Wang, Y. Liu, X.Y. Li, G. Chen, Z. Wang, J. Yang, B. Tan, Experimental study on the leaching performance of U(VI) solidified by uranium tailing cement with different admixtures and ratios, Environ. Technol. Inno 17 (2020), 100506.
  19. F.L. Jiang, B. Tan, Z. Wang, Y. Liu, Y.Y. Hao, C. Zhang, H.N. Wu, C.S. Hong, Preparation and related properties of geopolymer solidified uranium tailings bodies with various fibers and fiber content, Environ. Sci. .Pollut. R 331 (6) (2022) 2761-2777.
  20. Z. Rudzionis, S.K. Adhikary, F.C. Manhanga, D.K. Ashish, R. Ivanauskas, G. Stelmokaitis, A.A. Navickas, Natural zeolite powder in cementitious composites and its application as heavy metal absorbents, J. Build. Eng. 43 (2021), 103085.
  21. C. Napia, T. Sinsiri, J. Chai, P. Chindaprasirt, Leaching of heavy metals from solidified waste using Portland cement and zeolite as a binder, Waste. Manage. 32 (2012) 1459-1467. https://doi.org/10.1016/j.wasman.2012.02.011
  22. M. Vyvail, P. Bayer, Immobilization of heavy metals in natural zeolite-blended cement pastes, Procedia. Eng. 151 (2016) 162-169. https://doi.org/10.1016/j.proeng.2016.07.363
  23. M. Jimenez-Reyes, P.T. Almazan-Sanchez, M. Solache-Rios, Radioactive waste treatments by using zeolites. A short review, J. Environ. Radioactiv 233 (2021), 106610.
  24. International Organization for Standardization, ISO10390:2005, Soil quality-Determination of pH, Geneva, Switzerland, 2005.
  25. A.X. Wu, H.J. Wang, Theory and Technology of Paste Filling in Metal Mines, Science Press, Beijing, China, 2015.
  26. Standardization Administration of China, GB/T 203-2008: Granulated Blast Furnace Slag Used for Cement Production, 2008. Beijing, China.
  27. H.S. Shi, Eco-cement and Waste Recycling Technology, Chemical Industry Press, Beijing, China, 2005.
  28. Z.S. Lin, Slag Base Serise Eco-Cement, China Building Materials Press, Beijing, China, 2018.
  29. L.J. Vilaplana, J.F. Baeza, O. Galao, G.E. Alcocel, E. Zornoza, Mechanical properties of alkali activated blast furnace slag pastes reinforced with carbon fibers, Constr. Build. Mater. 116 (2016) 63-71. https://doi.org/10.1016/j.conbuildmat.2016.04.066
  30. Q. Liu, J.K. Zhang, Y.W. Su, X.J. Lu, Variation in polymerization degree of C-A-SH gels and its role in strength development of alkali-activated slag binders, J. Wuhan. Univ. Technol. 36 (6) (2021) 871-879. https://doi.org/10.1007/s11595-021-2281-z
  31. Ministry of Industry and Information Technology of the People's Republic of China, JC/T 479-2013, Building quicklime, Beijing, China, 2013.
  32. M. Valaskova, J. Tokarsky, M. Hundakova, J. Zdralkova, B. Smetana, Role of vermiculite and zirconium-vermiculite on the formation of zircon-cordierite nanocomposites, Appl. Clay. Sci. 75/76 (2013) 100-108. https://doi.org/10.1016/j.clay.2013.02.015
  33. C. Wang, W.J. Li, S.Z. Leng, H.D. Guo, J. Lu, X.J. Zhang, Y. Zhao, Z.P. Ye, Mineralogical characteristics and adsorption property of natural zeolite from Weichang area,Hebei Provence, Acta Petrol. Mineral 38 (6) (2019) 753-760.
  34. K.X. Zhu, J.S. Yuan, Z.H. Yu, Y.P. Fu, L. Zhang, Study on the physical properties and ion exchange performance of the domestic clinoptilolite, Ind. Miner. Process. (7) (2009) 19-23.
  35. Standardization Administration of China, GB/T 7023-2011, Standard Test Method for Leachability of Low and Intermediate Level Solidified Radioactive Waste Forms Beijing, China, 2011.
  36. Ministry of Ecology and Environment of the People's Republic of China, GB 14569.1-2011: Performance Requirements for Low and Intermediate Level Radioactive Waste Form - Cemented Waste Form, 2011. Beijing, China.
  37. L.P. Hu, H. Gao, Nonlinear Regression Analysis and and Their Intelligent Ralization by SAS, Publishing House of Electronics Industry, Beijing, China, 2013.
  38. Ministry of Ecology and Environment of the People's Republic of China, GB 23727-2020: Regulations for Radiation Protection and Radiation Environment Protection in Uranium Mining and Milling, 2020. Beijing, China.
  39. A. Akbarpour, M. Mahdikhani, R.Z. Moayed, Effects of natural zeolite and sulfate ions on the mechanical properties and microstructure of plastic concrete, Front. Struct. Civ. Eng. 16 (1) (2022) 13.
  40. A. Akbarpour, M. Mahdikhani, R.Z. Moayed, Mechanical behavior and permeability of plastic concrete containing natural zeolite under triaxial and uniaxial compression, J. Mater. Civil. Eng. 34 (2) (2022), https://doi.org/10.1061/(ASCE)MT.1943-5533.0004093.
  41. S. Ozen, B. Uzal, Effect of characteristics of natural zeolites on their geo-polymerization, Case. Stud. Constr. Mat 15 (2021), https://doi.org/10.1016/j.cscm.2021.e00715.
  42. B.I. El-Eswed, R.I. Yousef, M. Alshaaer, I. Hamadneh, S.I. Al-Gharabli, F. Khalili, Stabilization/solidification of heavy metals in kaolin/zeolite based geo-polymers, Int. J. Miner. Process. 137 (2015) 34-42. https://doi.org/10.1016/j.minpro.2015.03.002
  43. M. Thomas, M. Osinska, A. Slosarczyk, Long-term behavior of cement mortars based on municipal solid waste slag and natural zeoliteda comprehensive physico-mechanical, structural and chemical assessment, Materials 15 (3) (2022), https://doi.org/10.3390/ma15031001.