DOI QR코드

DOI QR Code

Effective removal of non-radioactive and radioactive cesium from wastewater generated by washing treatment of contaminated steel ash

  • P. Sopapan (Radioactive Waste Management Center, Thailand Institute of Nuclear Technology (Public Organization)) ;
  • U. Lamdab (Radioactive Waste Management Center, Thailand Institute of Nuclear Technology (Public Organization)) ;
  • T. Akharawutchayanon (Radioactive Waste Management Center, Thailand Institute of Nuclear Technology (Public Organization)) ;
  • S. Issarapanacheewin (Radioactive Waste Management Center, Thailand Institute of Nuclear Technology (Public Organization)) ;
  • K. Yubonmhat (Radioactive Waste Management Center, Thailand Institute of Nuclear Technology (Public Organization)) ;
  • W. Silpradit (Radioactive Waste Management Center, Thailand Institute of Nuclear Technology (Public Organization)) ;
  • W. Katekaew (Radioactive Waste Management Center, Thailand Institute of Nuclear Technology (Public Organization)) ;
  • N. Prasertchiewchan (Radioactive Waste Management Center, Thailand Institute of Nuclear Technology (Public Organization))
  • 투고 : 2022.05.09
  • 심사 : 2022.10.07
  • 발행 : 2023.02.25

초록

The co-precipitation process plays a key role in the decontamination of radionuclides from low and intermediate levels of liquid waste. For that reason, the removal of Cs ions from waste solution by the co-precipitation method was carried out. A simulated liquid waste (133Cs) was prepared from a 0.1 M CsCl solution, while wastewater generated by washing steel ash served as a representative of radioactive cesium solution (137Cs). By co-precipitation, potassium ferrocyanide was applied for the adsorption of Cs ions, while nickel nitrate and iron sulfate were selected for supporting the precipitation. The amount of residual Cs ions in the CsCl solution after precipitation and filtration was determined by ICP-OES, while the radioactivity of 137Cs was measured using a gamma-ray spectrometer. After cesium removal, the amount of cesium appearing in both XRD and SEM-EDS was analyzed. The removal efficiency of 133Cs was 60.21% and 51.86% for nickel nitrate and iron sulfate, respectively. For the ash-washing solution, the removal efficiency of 137Cs was revealed to be more than 99.91% by both chemical agents. This implied that the co-precipitation process is an excellent strategy for the effective removal of radioactive cesium in waste solution treatment.

키워드

과제정보

The authors would like to acknowledge the support provided by the Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization) for the analysis of ICP-OES and XRD. This work was financially supported by Thailand Science Research and Innovation (TSRI).

참고문헌

  1. J.O. Lubenau, J.G. Yusko, Radioactive materials in recycled metals, Health Phys. 68 (1995) 440-451, https://doi.org/10.1097/00004032-199504000-00001.
  2. T. Hrncir, M. Panik, F. Ondra, V. Necas, The impact of radioactive steel recycling on the public and professionals, J. Hazard Mater. (2013) 254-255, https://doi.org/10.1016/j.jhazmat.2013.03.038.
  3. J.M. Arnal, M. Sancho, B. Garcia-Fayos, Treatment of 137Cs contaminated water by selective adsorption, Desalination 321 (2013) 22-27, https://doi.org/10.1016/j.desal.2013.04.019.
  4. K. Yubonmhat, T. Akharawutchayanon, P. Nuanjan, S. Issarapanacheewin, W. Katekaew, N. Prasertchiewchan, Progress and challenges of radioactive waste management in Thailand, J. Hazard. Toxic Radioact. Waste. 26 (2022), 04022009, https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000693.
  5. Q.T.N. Le, K. Cho, Caesium adsorption on a zeolitic imidazolate framework (ZIF-8) functionalized by ferrocyanide, J. Colloid Interface Sci. 581 (2021) 741-750, https://doi.org/10.1016/j.jcis.2020.08.017.
  6. B. Sun, X.G. Hao, Z.D. Wang, G.Q. Guan, Z.L. Zhang, Y.B. Li, S.B. Liu, Separation of low concentration of cesium ion from wastewater by electrochemically switched ion exchange method: experimental adsorption kinetics analysis, J. Hazard Mater. (2012) 233-234, https://doi.org/10.1016/j.jhazmat.2012.07.010.
  7. X.H. Fang, F. Fang, C.H. Lu, L. Zheng, Removal of Cs+, Sr2+, and Co2+ ions from the mixture of organics and suspended solids aqueous solutions by zeolites, Nucl. Eng. Technol. 49 (2017) 556-561, https://doi.org/10.1016/j.net.2016.11.008.
  8. B.M. Jun, M. Jang, C.M. Park, J. Han, Y. Yoon, Selective adsorption of Cs+ by MXene (Ti3C2Tx) from model low-level radioactive wastewater, Nuclear Engineering and Technology, Nucl. Eng. Technol. 52 (2020) 1201-1207, https://doi.org/10.1016/j.net.2019.11.020.
  9. H. Thorring, L. Skuterud, E. Steinnes, Influence of chemical composition of precipitation on migration of radioactive caesium in natural soils, J. Environ. Radioact. 134 (2014) 114-119, https://doi.org/10.1016/j.jenvrad.2014.03.006.
  10. J. Kim, K. Lee, B.K. Seo, J.H. Hyun, Effective removal of radioactive cesium from contaminated water by synthesized composite adsorbent and its thermal treatment for enhanced storage stability, Environ. Res. 191 (2020), 110099, https://doi.org/10.1016/j.envres.2020.110099.
  11. H. Rogers, J. Bowers, D.G. Anderson, An isotope dilution-precipitation process for removing radioactive cesium from wastewater, J. Hazard Mater. 243 (2012) 124-129, https://doi.org/10.1016/j.jhazmat.2012.10.006.
  12. J. Wang, S. Zhuang, Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes, Nucl. Eng. Technol. 52 (2020) 328-336, https://doi.org/10.1016/j.net.2019.08.001.
  13. X. Yang, L. Jiang, S. Peng, L. Zhang, G. Huang, Removal of cesium from liquid radioactive waste by in situ electrochemical synthesis of cesium zinc ferrocyanide, Colloids Surf. A Physicochem. Eng. Asp. 626 (2021), 127050, https://doi.org/10.1016/j.colsurfa.2021.127050.
  14. G.M. Rashad, M.R. Mahmoud, M.A. Soliman, Combination of coprecipitation and foam separation processes for rapid recovery and preconcentration of cesium radionuclides from water systems, Process Saf. Environ. 130 (2019) 163-173, https://doi.org/10.1016/j.psep.2019.08.007.
  15. X. Zhang, X. Tan, C. Li, Y. Yi, W. Liu, L. Zhang, Energy-efficient and simultaneous extraction of lithium, rubidium and cesium from lepidolite concentrate via sulfuric acid baking and water leaching, Hydrometallurgy 185 (2019) 244-249, https://doi.org/10.1016/j.hydromet.2019.02.011.
  16. M.M.A. Dawoud, M.M. Hegazi, H.M. Saleh, W.K. El-Helew, Removal of stable and radio isotopes from wastewater by using modified microcrystalline cellulose based on Taguchi L16, Int. J. Environ. Sci. Technol. (2022) 1-12, https://doi.org/10.1007/s13762-022-04073-3.
  17. H.M. Saleh, H.R. Moussa, F.A. El-Saied, M. Dawoud, E.A. Nouh, R.S. A Wahed, Adsorption of cesium and cobalt onto dried Myriophyllum spicatum L. from radio-contaminated water: experimental and theoretical study, Prog. Nucl. Energy 125 (2020), 103393, https://doi.org/10.1016/j.pnucene.2020.103393.
  18. A.E. Osmanlioglu, Decontamination of radioactive wastewater by two-staged chemical precipitation, Nucl. Eng. Technol. 50 (2018) 886-889, https://doi.org/10.1016/j.net.2018.04.009.
  19. Z. Li, T. Pranolo, Z. Zhu, C.Y. Cheng, Solvent extraction of cesium and rubidium from brine solutions using 4-tert-butyl-2-(α-methylbenzyl)-phenol, Hydrometallurgy 171 (2017) 1-7, https://doi.org/10.1016/j.hydromet.2017.03.007.
  20. N. Goyal, P. Gao, Z. Wang, S. Cheng, Y.S. Ok, G. Li, L. Liu, Nanostructured chitosan/molecular sieve-4A an emergent material for the synergistic adsorption of radioactive major pollutants cesium and strontium, J. Hazard Mater. 392 (2020), 122494, https://doi.org/10.1016/j.jhazmat.2020.122494.
  21. H.M. Saleh, H.R. Moussa, F.A. El-Saied, M. Dawoud, T.A. Bayoumi, R.S.A. Wahed, Mechanical and physicochemical evaluation of solidified dried submerged plants subjected to extreme climatic conditions to achieve an optimum waste containment, Prog. Nucl. Energy 122 (2020), 103285, https://doi.org/10.1016/j.pnucene.2020.103285.
  22. H.M. Saleh, R.F. Aglan, H.H. Mahmoud, Qualification of corroborated real phytoremediated radioactive wastes under leaching and other weathering parameters, Prog. Nucl. Energy 119 (2020), 103178, https://doi.org/10.1016/j.pnucene.2019.103178.
  23. C. Dong, X. Deng, X. Guo, B. Wang, X. Ye, J. Fan, C. Zhu, F. Fan, B. Qing, Synthesis of potassium metal ferrocyanide/Al-MCM-41 with fast and selective adsorption of cesium, Colloids Surf. A Physicochem. Eng. Asp. 613 (2021), 126107, https://doi.org/10.1016/j.colsurfa.2020.126107.
  24. P. Su, J. Zhang, Y. Li, Chemical fixation of toxic metals in stainless steel pickling residue by Na2S·xH2O, FeSO4·6H2O and phosphoric acid for beneficial uses, J. Environ. Sci. 90 (2020) 364-374, https://doi.org/10.1016/j.jes.2019.12.016.
  25. T. Zhang, Y. Zhao, H. Bai, W. Wang, Q. Zhang, Enhanced arsenic removal from water and easy handling of the precipitate sludge by using FeSO4 with CaCO3 to Ca(OH)2, Chemosphere 231 (2019) 134-139, https://doi.org/10.1016/j.chemosphere.2019.05.117.
  26. O.A.A. Moamen, I.M. Ismail, N. Abdelmonem, R.O. Abdel Rahmana, Factorial design analysis for optimizing the removal of cesium and strontium ions on synthetic nanosized zeolite, J. Taiwan Inst. Chem. Eng. 55 (2015) 133-144, https://doi.org/10.1016/j.jtice.2015.04.007.
  27. M. Li, J. Zhao, Y. Li, M. Li, Y. Wu, C. Wang, H. Jiao, P. Na, Enhanced adsorption of cesium ions by electrochemically switched ion exchange method: based on surface-synthetic Na2Ti3O7 nanotubes, Colloids Surf., A 579 (2019), 123712, https://doi.org/10.1016/j.colsurfa.2019.123712.
  28. M.N. Nguyen, M. Yaqub, S. Kim, W. Lee, Optimization of cesium adsorption by Prussian blue using experiments and gene expression modeling, J. Water Proc. Eng. 41 (2021), 102084, https://doi.org/10.1016/j.jwpe.2021.102084.
  29. J. Li, Y. Zan, Z. Zhang, M. Dou, F. Wang, Prussian blue nanocubes decorated on nitrogen-doped hierarchically porous carbon network for efficient sorption of radioactive cesium, J. Hazard Mater. 385 (2020), 121568, https://doi.org/10.1016/j.jhazmat.2019.121568.
  30. S. Zhuang, J. Wang, Removal of cesium ions using nickel hexacyanoferratesloaded bacterial cellulose membrane as an effective adsorbent, J. Mol. Liq. 294 (2019), 111682, https://doi.org/10.1016/j.molliq.2019.111682.
  31. H. Hayashi, Y. Sato, S. Aoki, M. Takaishi, In situ XRF analysis of Cs adsorption by the precipitation bands of Prussian blue analogues formed in agarose gels, J. Anal. At. Spectrom. 34 (2019) 979-985, https://doi.org/10.1039/C9JA00025A.
  32. S. Kang, J. Lee, S.M. Park, D.S. Alessi, K. Baek, Adsorption characteristics of cesium onto calcium-silicate-hydrate in concrete powder and block, Chemosphere 259 (2020), https://doi.org/10.1016/j.chemosphere.2020.127494.
  33. IAEA (International Atomic Energy Agency), Technical reports series No. 236, in: Treatment of Low- and Intermediate-Level Liquid Radioactive Wastes, IAEA, Vienna, 1984.
  34. K. McKinley, I. McLellan, F. Gagne, B. Quinn, The toxicity of potentially toxic elements (Cu, Fe, Mn, Zn and Ni) to the cnidarian Hydra attenuata at environmentally relevant concentrations, Sci. Total Environ. 665 (2019) 848-854, https://doi.org/10.1016/j.scitotenv.2019.02.193.
  35. G. Genchi, A. Carocci, G. Lauria, M.S. Sinicropi, A. Catalano, Nickel: human health and environmental toxicology, Int. J. Environ. Res. Publ. Health 17 (2020) 679, https://doi.org/10.3390/ijerph17030679.
  36. N.R. Jyothi, Heavy metal sources and their effects on human health, in: M.K. Nazal, H. Zhao (Eds.), Heavy Metals-Their Environmental Impacts and Mitigation, IntechOpen, London, 2020, pp. 21-32, https://doi.org/10.5772/intechopen.91574.