DOI QR코드

DOI QR Code

POLLUTION DETECTION FOR THE SINGULAR LINEAR PARABOLIC EQUATION

  • IQBAL M. BATIHA (Department of Mathematics, Al Zaytoonah University of Jordan) ;
  • IMAD REZZOUG (Department of Mathematics and Computer Science, University of Larbi Ben M'hidi) ;
  • TAKI-EDDINE OUSSAEIF (Department of Mathematics and Computer Science, University of Larbi Ben M'hidi) ;
  • ADEL OUANNAS (Department of Mathematics and Computer Science, University of Larbi Ben M'hidi) ;
  • IQBAL H. JEBRIL (Department of Mathematics, Al Zaytoonah University of Jordan)
  • 투고 : 2022.10.08
  • 심사 : 2022.12.10
  • 발행 : 2023.05.30

초록

In this work, we are concerned by the problem of identification of noisy terms which arise in singular problem as for remote sensing problems, and which are modeled by a linear singular parabolic equation. For the reason of missing some data that could be arisen when using the traditional sentinel method, the later will be changed by a new sentinel method for attaining the same purpose. Such new method is a particular least square-like method which permits one to distinguish between the missing terms and the pollution terms. In particular, a sentinel method will be given here in its more realistic setting for singular parabolic problems, where in this case, the observation and the control have their support in different open sets. The problem of finding a new sentinel is equivalent to finding singular optimality system of the least square control for the parabolic equation that we solve.

키워드

참고문헌

  1. A. Dababneh, A. Zraiqat, A. Farah, H. Al-Zoubi, M. Abu Hammad, Numerical methods for finding periodic solutions of ordinary differential equations with strong nonlinearity, J. Math. Comput. Sci. 11 (2021), 6910-6922.
  2. M. Mostafavi, Quantum Partial Derivatives of Q-analytic Functions On Quantum Supers-pace Aq, Int. J. Open Problems Compt. Math. 15 (2022), 81-93.
  3. I.M. Batiha, N. Barrouk, A. Ouannas, W.G. Alshanti, On global existence of the fractional reaction-diffusion system's solution, International Journal of Analysis and Applications 21 (2023), 11.
  4. I.M. Batiha, Solvability of the solution of superlinear hyperbolic Dirichlet problem, International Journal of Analysis and Applications 20 (2022), 62.
  5. I.M. Batiha, Z. Chebana, T.E. Oussaeif, A. Ouannas, I.H. Jebril, On a weak solution of a fractional-order temporal equation, Mathematics and Statistics 10 (2022), 1116-1120. https://doi.org/10.13189/ms.2022.100522
  6. N. Anakira, Z. Chebana, T.E. Oussaeif, I.M. Batiha, A. Ouannas, A study of a weak solution of a diffusion problem for a temporal fractional differential equation, Nonlinear Functional Analysis and Applications 27 (2022), 679-689. https://doi.org/10.22771/NFAA.2022.27.03.14
  7. J.L. Lions, Sentinelles pour les systemes distribues a donnees incompletes, Masson, Paris, 1992.
  8. I.M. Batiha, L. Ben Aoua, T.E. Oussaeif, A. Ouannas, S. Alshorman, I.H. Jebril, S. Momani, Common fixed point theorem in non-Archimedean menger PM-spaces using CLR property with application to functional equations, IAENG International Journal of Applied Mathematics 53 (2023), 360-368.
  9. T.-E. Oussaeif, B. Antara, A. Ouannas, I.M. Batiha, K.M. Saad, H. Jahanshahi, A.M. Aljuaid, A.A. Aly, Existence and uniqueness of the solution for an inverse problem of a fractional diffusion equation with integral condition, Journal of Function Spaces 2022 (2022), Article ID 7667370.
  10. A. Ouannas, F. Mesdoui, S. Momani, I. Batiha, G. Grassi, Synchronization of FitzHugh-Nagumo reaction-diffusion systems via one-dimensional linear control law, Archives of Control Sciences 31 (2021), 333-345.
  11. I.M. Batiha, A. Ouannas, R. Albadarneh, A.A. Al-Nana, S. Momani, Existence and uniqueness of solutions for generalized Sturm?Liouville and Langevin equations via Caputo?Hadamard fractional-order operator, Engineering Computations 39 (2022), 2581-2603. https://doi.org/10.1108/EC-07-2021-0393
  12. I.M. Batiha, Z. Chebana, T.E. Oussaeif, A. Ouannas, S. Alshorm, A. Zraiqat, Solvability and dynamics of superlinear reaction diffusion problem with integral condition, IAENG International Journal of Applied Mathematics 53 (2023), 113-121.
  13. A.R. Nazemi and S. Effati, Time optimal control problem of the wave equation, Advanced Modeling and Optimization 12 (2010), 363-382.
  14. M.T. Shatnawi, A. Ouannas, G. Bahia, I.M. Batiha, G. Grassi, The optimal homotopy asymptotic method for solving two strongly fractional-order nonlinear benchmark oscillatory problems, Mathematics 9 (2021), 2218.
  15. G. Bahia, A. Ouannas, I.M. Batiha, Z. Odibat, The optimal homotopy analysis method applied on nonlinear time-fractional hyperbolic partial differential equations, Numerical Methods for Partial Differential Equations 37 (2021), 2008-2022.
  16. J. Oudetallah, G. Bahia, A. Ouannas, I.M. Batiha, The quotient homotopy analysis method for solving nonlinear initial value problems, 2021 International Conference on Information Technology (2021), 195-199.
  17. A. Omrane, Some aspects of the sentinel method for pollution problems, Air Quality-Monitoring and Modeling 9 (2012), 185-205.
  18. Y. Miloudi, O. Nakoulima, A. Omrane, A method for detecting pollution in dissipative systems with incomplete data, ESAIM: Proceedings 17 (2007), 67-79. https://doi.org/10.1051/proc:071706
  19. Y. Miloudi, O. Nakoulima, A. Omrane, On the instantaneous sentinels in pollution problems of incomplete data, Inverse Problems in Science and Engineering 17 (2009), 451-459. https://doi.org/10.1080/17415970802015948
  20. A. Fursikov and O. Y. Imanuvilov, Controllability of evolution equations, Research Institute of Mathematics, Seoul National University, Korea, 1996.
  21. J.L. Lions, Controlabilite exacte, stabilisation et perturbations des systemes distribues, Masson, Paris, 1988.
  22. C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of wave from the boundary, SIAM Journal on Optimization and Control 305 (1992), 1024-1065. https://doi.org/10.1137/0330055