DOI QR코드

DOI QR Code

Non-Contrast Cine Cardiac Magnetic Resonance Derived-Radiomics for the Prediction of Left Ventricular Adverse Remodeling in Patients With ST-Segment Elevation Myocardial Infarction

  • Xin A (Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical School) ;
  • Mingliang Liu (Nankai University, School of Medicine) ;
  • Tong Chen (Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical School) ;
  • Feng Chen (Department of Computer Science, the University of Adelaide) ;
  • Geng Qian (Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical School) ;
  • Ying Zhang (Department of Cardiology, the Sixth Medical Center, Chinese People's Liberation Army General Hospital) ;
  • Yundai Chen (Department of Cardiology, the Sixth Medical Center, Chinese People's Liberation Army General Hospital)
  • 투고 : 2023.01.17
  • 심사 : 2023.06.15
  • 발행 : 2023.09.01

초록

Objective: To investigate the predictive value of radiomics features based on cardiac magnetic resonance (CMR) cine images for left ventricular adverse remodeling (LVAR) after acute ST-segment elevation myocardial infarction (STEMI). Materials and Methods: We conducted a retrospective, single-center, cohort study involving 244 patients (random-split into 170 and 74 for training and testing, respectively) having an acute STEMI (88.5% males, 57.0 ± 10.3 years of age) who underwent CMR examination at one week and six months after percutaneous coronary intervention. LVAR was defined as a 20% increase in left ventricular end-diastolic volume 6 months after acute STEMI. Radiomics features were extracted from the oneweek CMR cine images using the least absolute shrinkage and selection operator regression (LASSO) analysis. The predictive performance of the selected features was evaluated using receiver operating characteristic curve analysis and the area under the curve (AUC). Results: Nine radiomics features with non-zero coefficients were included in the LASSO regression of the radiomics score (RAD score). Infarct size (odds ratio [OR]: 1.04 (1.00-1.07); P = 0.031) and RAD score (OR: 3.43 (2.34-5.28); P < 0.001) were independent predictors of LVAR. The RAD score predicted LVAR, with an AUC (95% confidence interval [CI]) of 0.82 (0.75-0.89) in the training set and 0.75 (0.62-0.89) in the testing set. Combining the RAD score with infarct size yielded favorable performance in predicting LVAR, with an AUC of 0.84 (0.72-0.95). Moreover, the addition of the RAD score to the left ventricular ejection fraction (LVEF) significantly increased the AUC from 0.68 (0.52-0.84) to 0.82 (0.70-0.93) (P = 0.018), which was also comparable to the prediction provided by the combined microvascular obstruction, infarct size, and LVEF with an AUC of 0.79 (0.65-0.94) (P = 0.727). Conclusion: Radiomics analysis using non-contrast cine CMR can predict LVAR after STEMI independently and incrementally to LVEF and may provide an alternative to traditional CMR parameters.

키워드

과제정보

This work was supported by National Natural and Science Foundation of China (No. 82000243).

참고문헌

  1. Symons R, Masci PG, Goetschalckx K, Doulaptsis K, Janssens S, Bogaert J. Effect of infarct severity on regional and global left ventricular remodeling in patients with successfully reperfused ST segment elevation myocardial infarction. Radiology 2015;274:93-102 https://doi.org/10.1148/radiol.14132746
  2. Bolognese L, Neskovic AN, Parodi G, Cerisano G, Buonamici P, Santoro GM, et al. Left ventricular remodeling after primary coronary angioplasty: patterns of left ventricular dilation and long-term prognostic implications. Circulation 2002;106:2351-2357 https://doi.org/10.1161/01.CIR.0000036014.90197.FA
  3. Zile MR, Gaasch WH, Patel K, Aban IB, Ahmed A. Adverse left ventricular remodeling in community-dwelling older adults predicts incident heart failure and mortality. JACC Heart Fail 2014;2:512-522 https://doi.org/10.1016/j.jchf.2014.03.016
  4. Rodriguez-Palomares JF, Gavara J, Ferreira-Gonzalez I, Valente F, Rios C, Rodriguez-Garcia J, et al. Prognostic value of initial left ventricular remodeling in patients with reperfused STEMI. JACC Cardiovasc Imaging 2019;12:2445-2456 https://doi.org/10.1016/j.jcmg.2019.02.025
  5. Nguyen TL, Phan J, Hogan J, Hee L, Moses D, Otton J, et al. Adverse diastolic remodeling after reperfused ST-elevation myocardial infarction: An important prognostic indicator. Am Heart J 2016;180:117-127 https://doi.org/10.1016/j.ahj.2016.05.020
  6. Westman PC, Lipinski MJ, Luger D, Waksman R, Bonow RO, Wu E, et al. Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol 2016;67:2050-2060 https://doi.org/10.1016/j.jacc.2016.01.073
  7. Bulluck H, Rosmini S, Abdel-Gadir A, White SK, Bhuva AN, Treibel TA, et al. Residual myocardial iron following intramyocardial hemorrhage during the convalescent phase of reperfused ST-segment-elevation myocardial infarction and adverse left ventricular remodeling. Circ Cardiovasc Imaging 2016;9:e004940
  8. Ibanez B, Aletras AH, Arai AE, Arheden H, Bax J, Berry C, et al. Cardiac MRI endpoints in myocardial infarction experimental and clinical trials: JACC scientific expert panel. J Am Coll Cardiol 2019;74:238-256 https://doi.org/10.1016/j.jacc.2019.05.024
  9. Liu D, Borlotti A, Viliani D, Jerosch-Herold M, Alkhalil M, De Maria GL, et al. CMR native T1 mapping allows differentiation of reversible versus irreversible myocardial damage in ST-segment-elevation myocardial infarction: an OxAMI Study (Oxford acute myocardial infarction). Circ Cardiovasc Imaging 2017;10:e005986
  10. Savadjiev P, Chong J, Dohan A, Agnus V, Forghani R, Reinhold C, et al. Image-based biomarkers for solid tumor quantification. Eur Radiol 2019;29:5431-5440 https://doi.org/10.1007/s00330-019-06169-w
  11. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016;278:563-577 https://doi.org/10.1148/radiol.2015151169
  12. Raisi-Estabragh Z, Izquierdo C, Campello VM, Martin-Isla C, Jaggi A, Harvey NC, et al. Cardiac magnetic resonance radiomics: basic principles and clinical perspectives. Eur Heart J Cardiovasc Imaging 2020;21:349-356 https://doi.org/10.1093/ehjci/jeaa028
  13. Avard E, Shiri I, Hajianfar G, Abdollahi H, Kalantari KR, Houshmand G, et al. Non-contrast Cine Cardiac Magnetic Resonance image radiomics features and machine learning algorithms for myocardial infarction detection. Comput Biol Med 2022;141:105145
  14. Larroza A, Lopez-Lereu MP, Monmeneu JV, Gavara J, Chorro FJ, Bodi V, et al. Texture analysis of cardiac cine magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction. Med Phys 2018;45:1471-1480 https://doi.org/10.1002/mp.12783
  15. Larroza A, Materka A, Lopez-Lereu MP, Monmeneu JV, Bodi V, Moratal D. Differentiation between acute and chronic myocardial infarction by means of texture analysis of late gadolinium enhancement and cine cardiac magnetic resonance imaging. Eur J Radiol 2017;92:78-83 https://doi.org/10.1016/j.ejrad.2017.04.024
  16. Baessler B, Mannil M, Oebel S, Maintz D, Alkadhi H, Manka R. Subacute and chronic left ventricular myocardial scar: accuracy of texture analysis on nonenhanced cine MR images. Radiology 2018;286:103-112 https://doi.org/10.1148/radiol.2017170213
  17. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 2018;39:119-177 https://doi.org/10.1093/eurheartj/ehx393
  18. Lee JW, Hur JH, Yang DH, Lee BY, Im DJ, Hong SJ, et al. Guidelines for cardiovascular magnetic resonance imaging from the Korean Society of Cardiovascular Imaging-part 2: interpretation of cine, flow, and angiography data. Korean J Radiol 2019;20:1477-1490 https://doi.org/10.3348/kjr.2019.0407
  19. Reindl M, Tiller C, Holzknecht M, Lechner I, Eisner D, Riepl L, et al. Global longitudinal strain by feature tracking for optimized prediction of adverse remodeling after ST-elevation myocardial infarction. Clin Res Cardiol 2021;110:61-71 https://doi.org/10.1007/s00392-020-01649-2
  20. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res 2017;77:e104-e107 https://doi.org/10.1158/0008-5472.CAN-17-0339
  21. Zhou Y, Gu HL, Zhang XL, Tian ZF, Xu XQ, Tang WW. Multiparametric magnetic resonance imaging-derived radiomics for the prediction of disease-free survival in early-stage squamous cervical cancer. Eur Radiol 2022;32:2540-2551 https://doi.org/10.1007/s00330-021-08326-6
  22. Reindl M, Reinstadler SJ, Feistritzer HJ, Mueller L, Koch C, Mayr A, et al. Fibroblast growth factor 23 as novel biomarker for early risk stratification after ST-elevation myocardial infarction. Heart 2017;103:856-862 https://doi.org/10.1136/heartjnl-2016-310520
  23. Mewton N, Roubille F, Bresson D, Prieur C, Bouleti C, Bochaton T, et al. Effect of colchicine on myocardial injury in acute myocardial infarction. Circulation 2021;144:859-869 https://doi.org/10.1161/CIRCULATIONAHA.121.056177
  24. Chen BH, An DA, He J, Wu CW, Yue T, Wu R, et al. Myocardial extracellular volume fraction radiomics analysis for differentiation of reversible versus irreversible myocardial damage and prediction of left ventricular adverse remodeling after ST-elevation myocardial infarction. Eur Radiol 2021;31:504-514 https://doi.org/10.1007/s00330-020-07117-9
  25. Ma Q, Ma Y, Yu T, Sun Z, Hou Y. Radiomics of non-contrast-enhanced T1 mapping: diagnostic and predictive performance for myocardial injury in acute ST-segment-elevation myocardial infarction. Korean J Radiol 2021;22:535-546 https://doi.org/10.3348/kjr.2019.0969
  26. Chang S, Han K, Kwon Y, Kim L, Hwang S, Kim H, et al. T1 Map-based radiomics for prediction of left ventricular reverse remodeling in patients with non-ischemic dilated cardiomyopathy. Korean J Radiol 2023;24:395-405 https://doi.org/10.3348/kjr.2023.0065
  27. Kotu LP, Engan K, Borhani R, Katsaggelos AK, Orn S, Woie L, et al. Cardiac magnetic resonance image-based classification of the risk of arrhythmias in post-myocardial infarction patients. Artif Intell Med 2015;64:205-215 https://doi.org/10.1016/j.artmed.2015.06.001
  28. Ma Q, Ma Y, Wang X, Li S, Yu T, Duan W, et al. A radiomics nomogram for prediction of major adverse cardiac events in ST-segment elevation myocardial infarction. Eur Radiol 2021;31:1140-1150 https://doi.org/10.1007/s00330-020-07176-y
  29. Baessler B, Mannil M, Maintz D, Alkadhi H, Manka R. Texture analysis and machine learning of non-contrast T1-weighted MR images in patients with hypertrophic cardiomyopathy-preliminary results. Eur J Radiol 2018;102:61-67 https://doi.org/10.1016/j.ejrad.2018.03.013
  30. Jang J, El-Rewaidy H, Ngo LH, Mancio J, Csecs I, Rodriguez J, et al. Sensitivity of myocardial radiomics features to imaging parameters in cardiac MR imaging. J Magn Reson Imaging 2021;54:787-794 https://doi.org/10.1002/jmri.27581
  31. Aimo A, Vergaro G, Gonzalez A, Barison A, Lupon J, Delgado V, et al. Cardiac remodelling - Part 2: clinical, imaging and laboratory findings. A review from the study group on biomarkers of the heart failure association of the European Society of Cardiology. Eur J Heart Fail 2022;24:944-958  https://doi.org/10.1002/ejhf.2522