DOI QR코드

DOI QR Code

Analysis of Effect on Pesticide Drift Reduction of Prevention Plants Using Spray Drift Tunnel

비산 챔버를 활용한 차단 식물의 비산 저감 효과 분석

  • Jinseon Park (AgriBio Institute of Climate Change Management, Chonnam National University) ;
  • Se-Yeon Lee (Department of Rural and Bio-systems Engineering, Education and Research Unit for Climate-Smart Reclaimed-Tideland Agriculture (BK21 four), Chonnam National University) ;
  • Lak-Yeong Choi (Department of Rural and Bio-systems Engineering, Education and Research Unit for Climate-Smart Reclaimed-Tideland Agriculture (BK21 four), Chonnam National University) ;
  • Se-woon Hong (Department of Rural and Bio-systems Engineering, AgriBio Institute of Climate Change Management,; Education and Research Unit for Climate-Smart Reclaimed-Tideland Agriculture (BK21 four), Chonnam National University)
  • 박진선 (전남대학교 농업생명과학대학 기후변화대응농생명연구소) ;
  • 이세연 (전남대학교 농업생명과학대학 지역.바이오시스템공학과 & BK21기후지능형간척지농업교육연구팀) ;
  • 최락영 (전남대학교 농업생명과학대학 지역.바이오시스템공학과 & BK21기후지능형간척지농업교육연구팀) ;
  • 홍세운 (전남대학교 농업생명과학대학 지역.바이오시스템공학과 BK21기후지능형간척지농업교육연구팀)
  • Received : 2023.01.12
  • Accepted : 2023.03.13
  • Published : 2023.04.30

Abstract

With rising concerns about pesticide spray drift by aerial application, this study attempt to evaluate aerodynamic property and collection efficiency of spray drift according to the leaf area index (LAI) of crop for preventing undesirable pesticide contamination by the spray-drift tunnel experiment. The collection efficiency of the plant with 'Low' LAI was measured at 16.13% at a wind speed of 1 m·s-1. As the wind speed increased to 2 m·s-1, the collection efficiency of plant with the same LAI level increased 1.80 times higher to 29.06%. For the 'Medium' level LAI, the collection efficiency was 24.42% and 43.06% at wind speed of 1 m·s-1 and 2 m·s-1, respectively. For the 'High' level LAI, it also increased 1.24 times higher as the wind speed increased. The measured results indicated that the collection of spray droplets by leaves were increased with LAI and wind speed. This also implied that dense leaves would have more advantages for preventing the drift of airborne spray droplets. Aerodynamic properties also tended to increase as the LAI increased, and the regression analysis of quadric equation and power law equation showed high explanatory of 0.96-0.99.

본 연구에서는 항공살포에 의한 약액의 비산 저감을 위한 방법으로 차단 식물의 효과를 정량 평가하고자 하였다. 이에 따라 식물의 엽면적지수(LAI)에 따른 잎의 약액 부착 효율 및 공기 투과 저항성을 비산 챔버를 활용하여 측정하였다. LAI는 엽면적 밀도를 세 수준으로 구분하여 측정하였으며, 각 수준별 평균 LAI는 1.723±0.130, 2.810±0.412, 4.875±0.701로 산정되었다. 풍속 1m·s-1에서 LAI가 'Low' 수준일 때 부착 효율 16.13%로 측정되었고, 동일 LAI 수준에서 풍속이 2m·s-1로 증가할 때 식물의 부착 효율은 29.06%로 측정되어 1.80배 증가한 것으로 나타났다. 'Medium' 수준에서는 풍속 조건에 따라 24.42%에서 43.06%로 1.76배 증가하였다. 또한 LAI가 'High' 수준일 때 풍속의 변화에 따른 식물의 부착 효율은 1.24배 증가하는 것으로 나타나 풍속의 증가에 따라 식물의 약액 부착 효율도 함께 증가하는 경향을 보였다. 풍속 및 LAI에 따른 식물의 공기 투과 저항성 실험에서 LAI가 증가할수록 공기 투과 저항성 또한 증가하는 경향을 보였으며, 2차 함수 및 거듭제곱 함수에 대한 회귀분석 결과 결정계수가 0.96-0.99 수준으로 높은 설명력을 보였다. 본 연구를 통해 농경지에 인접하게 식재된 식물이 항공살포 된 약액이 비산될 때 잎에 부착 및 지면 퇴적을 유도하여 비산 저감에 효과를 나타냄을 정량 평가하였다. 또한 LAI가 증가할수록 내부 저항이 증가하는 것을 실험적으로 규명하였다. 이를 기반으로 향후 잎의 형상 및 캐노피 등 식물 특성 변수를 추가 반영하여 비산 저감 효과를 기대할 수 있는 적정 작물을 선정하는 자료가 될 것으로 사료된다.

Keywords

Acknowledgement

이 논문은 전남대학교 학술연구비(과제번호: 2021-2484)와 한국연구재단 연구사업(과제번호: 2019R1I1A3A01055863)의 지원에 의하여 연구되었으며, 이에 감사를 표합니다.

References

  1. Creech C.F., R.S. Henry, B.K. Fritz, and G.R. Kruger 2015, Influence of herbicide active ingredient, nozzle type, orifice size, spray pressure, and carrier volume rate on spray droplet size characteristics. Weed Technol 29:298-310. doi:10.1614/WT-D-14-00049.1 
  2. De Schampheleire M., D. Nuyttens, D. Dekeyser, P. Verboven, P. Spanoghe, W. Cornelis, D. Gabriels, and W. Steurbaut 2009, Deposition of spray drift behind border structures. Crop Prot 28:1061-1075. doi:10.1016/j.cropro.2009.08.006 
  3. Gregorio E., X. Torrent, S. Planas, and J.R. Rosell-Polo 2019, Assessment of spray drift potential reduction for hollow-cone nozzles: Part 2. LiDAR technique. Sci Total Environ 687:967-977. doi:10.1016/j.scitotenv.2019.06.151 
  4. Guler H., H. Zhu, H.E. Ozkan, R.C. Derksen, Y. Yu, and C.R. Krause 2007, Spray characteristics and drift reduction potential with air induction and conventional flat-fan nozzles. Trans ASABE 50:745-754. doi:10.13031/2013.23129 
  5. Hewitt A.J., D.R. Johnson., J.D. Fish, C.G. Hermansky, and D.L. Valcore 2002, Development of the spray drift task force database for aerial applications. Environ Toxicol Chem 21: 648-658. doi:10.1002/etc.5620210326 
  6. Hong S.W., J.S. Park, H.N. Jeong, S.Y. Lee, L.Y. Choi, L. Zhao, and H. Zhu 2021, Fluid dynamic approaches for prediction of spray drift from ground pesticide applications: a review. Agronomy 11:1182. doi:10.3390/agronomy11061182 
  7. Jensen P.K., and M.H. Olesen 2014, Spray mass balance in pesticide application: a review. Crop Prot 61:23-31. doi:10.1016/j.cropro.2014.03.006 
  8. Jin Y.D., H.D. Lee, Y.K. Park, J.B. Kim, and O.K. Kwon 2008. Drift and distribution properties of pesticide spray solution applied aerially by manned-helicopter. Korean J Pestic Sci 12:351-356. (in 
  9. Kim C.J., R.K. Lee, X. Yuan, M. Kim, H.J. Shin, L.S. Kim, K.S. Kyung, and H.H. Noh 2022, Residual pattern of pesticides drifted by unmanned aerial vehicle (UAV) spraying and drift reduction using maize (Zea mays L.). Korean J Pestic Sci 26:103-120. (in Korean) doi:10.7585/kjps.2022.26.2.103 
  10. Kim R.W., and S.W. Hong 2019, Applicability of optical particle counters for measurement of airborne pesticide spray drift. J Korean Soc Agric Eng 61:79-87. (in Korean) doi:10.5389/KSAE.2019.61.5.079 
  11. KOSIS 2022, Statistics KOREA Government Official Work Conference. Available via https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1EB001&conn_path=I3. Accessed 20 Nov 2022. 
  12. KREI 2021, Agricultural Outlook 2021, Korea Rural Economic Institute (KREI), Naju, Korea. 
  13. Noh H.H., C.J. Kim, B.C. Moon, T.G. Kim, D. Kim, M.S. Oh, D.S. Choi, Y.Y. Kim, H.S. Song, and K.S. Kyung 2020, Drift patterns of aerial spraying pesticide caused by formulations and nozzles. Korean J Pestic Sci 24:278-285. (in Korean) doi:10.7585/kjps.2020.24.3.278 
  14. Nuyttens D., K. Baetens, M. De Schampheleire, and B. Sonck 2007, Effect of nozzle type, size and pressure on spray droplet characteristics. Biosyst Eng 97:333-345. doi:10.1016/j.biosystemseng.2007.03.001 
  15. Park J.S., S.Y. Lee, L.Y. Choi, H.N. Jeong, H.H. Noh, S.-H. Yu, H.S. Song, and S.W. Hong 2021, Analyzing drift patterns of spray booms with different nozzle types and working pressures in wind tunnel. J Korean Soc Agric Eng 63:39-47. (in Korean) doi:10.5389/KSAE.2021.63.5.039 
  16. Park J.S., S.Y. Lee, L.Y. Choi, S.W. Hong, H.H. Noh, and S.H. Yu 2022, Airborne-spray-drift collection efficiency of nylon screens: measurement and CFD analysis. Agronomy 12:2865 doi:10.3390/agronomy12112865 
  17. Ramsdale B.K., and C.G. Messersmith 2017, Drift-reducing no zzle effects on herbicide performance. Weed Tech 15:453-460. doi:10.1614/0890-037X(2001)015[0453:DRNEOH]2.0.CO;2. 
  18. RDA 2020, Manual of unmanned aerial vehicle for spraying pesticide. Rural Developmnet Administration(RDA), Jeonju, Korea. 
  19. Tang Q., R. Zhang, L. Chen, W. Deng, M. Xu, G. Xu, L. Li, and A. Hewitt 2020, Numerical simulation of the down wash flow field and droplet movement from an unmanned helicopter for crop spraying. Comput Electron Agric 174:105468. doi:10.1016/j.compag.2020.105468 
  20. Wang J., Y. Lan, H. Zhang, Y. Zhang, S. Wen, W. Yao, and J. Deng 2018. Drift and deposition of pesticide applied by UAV on pineapple plants under different meteorological conditions. Int J Agric Biol Eng 11:5-12. doi:10.25165/j.ijabe.20181106.4038 
  21. Zheng Y., S. Yang, X. Liu, J. Wang, T. Norton, J. Chen, and Y. Tan 2018, The computational fluid dynamic modeling of downwash flow field for a six-rotor UAV. Front Agric Sci Eng 5:159-167. doi:10.15302/J-FASE-2018216