DOI QR코드

DOI QR Code

IMPROVED BOUNDS OF POLYNOMIAL INEQUALITIES WITH RESTRICTED ZERO

  • Robinson Soraisam (Department of Mathematics, National Institute of Technology Manipur) ;
  • Nirmal Kumar Singha (Department of Mathematics, National Institute of Technology Manipur) ;
  • Barchand Chanam (Department of Mathematics, National Institute of Technology Manipur)
  • Received : 2022.08.10
  • Accepted : 2022.10.18
  • Published : 2023.06.15

Abstract

Let p(z) be a polynomial of degree n having no zero in |z| < k, k ≥ 1. Then Malik [12] obtained the following inequality: $${_{max \atop {\mid}z{\mid}=1}{\mid}p{\prime}(z){\mid}{\leq}{\frac{n}{1+k}}{_{max \atop {\mid}z{\mid}=1}{\mid}p(z){\mid}.$$ In this paper, we shall first improve as well as generalize the above inequality. Further, we also improve the bounds of two known inequalities obtained by Govil et al. [8].

Keywords

Acknowledgement

We are thankful to NIT, Manipur for providing us financial support. We are also grateful to the referee for his/her useful suggestions.

References

  1. A. Aziz and Q.M. Dawood, Inequalities for a polynomial and its derivative,J. Approx. Theory, 54 (1988), 306-313.  https://doi.org/10.1016/0021-9045(88)90006-8
  2. A. Aziz and B.A. Zargar, Inequalities for a polynomial and its derivative, Math. Inequal. Appl., 1(4) (1998), 543-550.  https://doi.org/10.7153/mia-01-52
  3. S. Bernstein, Lecons Sur Les Proprietes extremales et la meilleure approximation desfunctions analytiques d'une fonctions reele, Gauthier-Villars, Paris, 1926. 
  4. M. Bidkham and K.K. Dewan, Inequalities for polynomial and its derivative, J. Math. Anal. Appl., 116 (1992), 319-324.  https://doi.org/10.1016/0022-247X(92)90298-R
  5. B. Chanam and K.K. Dewan, Inequalities for polynomial and its derivative, J. Math. Anal. Appl., 336 (2007), 171-179.  https://doi.org/10.1016/j.jmaa.2007.02.029
  6. T.N. Chand and M.A. Malik, On Erdos-Lax theorem, Proc. Indian Acad. Sci., 92(3) (1983), 191-193.  https://doi.org/10.1007/BF02876763
  7. N.K. Govil and Q.I. Rahaman, Functions of exponential type not vanishing in a half-plane and related polynomials, Trans. Amer. Math.Soc., 137 (1969), 501-517.  https://doi.org/10.1090/S0002-9947-1969-0236385-6
  8. N.K. Govil, Q.I. Rahaman and G. Schmeisser, On the derivative of a polynomial, Illinoise J. Math., 23 (1979), 319-329. 
  9. V.K. Jain, On maximum modulus of polynomials with zeros outside a circle, Glasnik Mathematicki, 29 (1994), 267-274. 
  10. Kshetrimayum Krishnadas, Reingachand Ngamchui and Barchand Chanam, Generalized and Extended Versions of Ankeny-Rivlin and Improved,Geneneralized, and Extended Versions of Rivlin Type Inequalities for the s th Derivative of a Polynomial, MDPI mathematics, 9(8), (2021), 887. 
  11. P.D. Lax, Proof of a conjecture of P. Erdos on the derivative of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509-513.  https://doi.org/10.1090/S0002-9904-1944-08177-9
  12. M.A. Malik, On the derivative of a polynomial, J. London Math. Soc., 1 (1969), 57-60.  https://doi.org/10.1112/jlms/s2-1.1.57
  13. M.A. Qazi, On the maximum modulus of polynomials, Proc. Amer. Math. Soc., 115 (1992), 337-343.  https://doi.org/10.1090/S0002-9939-1992-1113648-1
  14. G. Szego, Bemerkungen zu einem satz von J.H. Grace,etc., Math. Z., 13 (1992), 28-55.  https://doi.org/10.1007/BF01485280
  15. P. Turan, Uber die ableitung von polynomen , Compositio Math., 7 (1939), 89-95.