DOI QR코드

DOI QR Code

A modified JFNK with line search method for solving k-eigenvalue neutronics problems with thermal-hydraulics feedback

  • Lixun Liu (Institute of Nuclear and New Energy Technology (INET), Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University) ;
  • Han Zhang (Institute of Nuclear and New Energy Technology (INET), Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University) ;
  • Yingjie Wu (Institute of Nuclear and New Energy Technology (INET), Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University) ;
  • Baokun Liu (Institute of Nuclear and New Energy Technology (INET), Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University) ;
  • Jiong Guo (Institute of Nuclear and New Energy Technology (INET), Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University) ;
  • Fu Li (Institute of Nuclear and New Energy Technology (INET), Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University)
  • 투고 : 2022.03.20
  • 심사 : 2022.09.08
  • 발행 : 2023.01.25

초록

The k-eigenvalue neutronics/thermal-hydraulics coupling calculation is a key issue for reactor design and analysis. Jacobian-free Newton-Krylov (JFNK) method, featured with super-linear convergence rate and high efficiency, has been attracting more and more attention to solve the multi-physics coupling problem. However, it may converge to the high-order eigenmode because of the multiple solutions nature of the k-eigenvalue form of multi-physics coupling issue. Based on our previous work, a modified JFNK with a line search method is proposed in this work, which can find the fundamental eigenmode together with thermal-hydraulics feedback in a wide range of initial values. In detail, the existing modified JFNK method is combined with the line search strategy, so that the intermediate iterative solution can avoid a sudden divergence and be adjusted into a convergence basin smoothly. Two simplified 2-D homogeneous reactor models, a PWR model, and an HTR model, are utilized to evaluate the performance of the newly proposed JFNK method. The results show that the performance of this proposed JFNK is more robust than the existing JFNK-based methods.

키워드

과제정보

This study is supported by Beijing Natural Science Foundation 1212012, Chinese National Natural Science Foundation Project 11505102 and 11375099, Chinese National ST Major Project 2018ZX06 902013, and IAEA CRP I31020.

참고문헌

  1. C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia, 1995.
  2. D. Price, I. Radaideh, T. Mui, M. Katare, T. Kozlowski, Multiphysics modeling and validation of spent fuel isotopics using coupled neutronics/thermal-hydraulics simulations, Sci. Technol. Nucl. Install. 2020 (2020) 14, 2764634.
  3. Q. Zhang, T. Peng, G. Zhang, et al., An efficient scheme for coupling OpenMC and FLUENT with adaptive load balancing, Sci. Technol. Nucl. Install. 2021 (2021) 16, 5549602.
  4. P. Cattaneo, R. Lenain, E. Merle, et al., Numerical optimization of a multi-physics calculation scheme based on partial convergence, Ann. Nucl. Energy 151 (2021), 107892.
  5. J. Lee, H.G. Joo, Convergence analysis of fixed-point iteration with Anderson Acceleration on a simplified neutronics/thermal-hydraulics system, Nucl. Eng. Technol. 54 (2) (2022) 532-545. https://doi.org/10.1016/j.net.2021.08.005
  6. D.A. Knoll, D.E. Keyes, Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys. 193 (2004) 357-397. https://doi.org/10.1016/j.jcp.2003.08.010
  7. D.A. Knoll, H. Park, C. Newman, Acceleration of k-eigenvalue/criticality calculations using the jacobian-free Newton-Krylov method, Nucl. Sci. Eng. 167 (2011) 133-140. https://doi.org/10.13182/NSE09-89
  8. H.K. Park, D.A. Knoll, D.R. Gaston, et al., Tightly coupled multi-physics algorithms for pebble bed reactor, Nucl. Sci. Eng. 166 (2010) 118-133. https://doi.org/10.13182/NSE09-104
  9. V.S. Mahadevan, J.C. Ragusa, V.A. Mousseau, A verification exercise in multi-physics simulations for coupled reactor physics calculations, Prog. Nucl. Energy 55 (2012) 12-32. https://doi.org/10.1016/j.pnucene.2011.10.013
  10. A.G. Mylonakis, M. Varvayanni, N. Catsaros, A Newton-based Jacobian-free approach for neutronic-Monte Carlo/thermal-hydraulic static coupled analysis, Ann. Nucl. Energy 110 (2017) 709-725. https://doi.org/10.1016/j.anucene.2017.07.014
  11. H. Zhang, et al., An assessment of coupling algorithms in HTR simulator TINTE, Nucl. Sci. Eng. 190 (3) (2018a) 287-309. https://doi.org/10.1080/00295639.2018.1442061
  12. H. Zhang, et al., Efficient simultaneous solution of multi-physics multi-scale nonlinear coupled system in HTR reactor based on nonlinear elimination method, Ann. Nucl. Energy 114 (2018b) 301-310. https://doi.org/10.1016/j.anucene.2017.12.014
  13. H. Zhang, et al., The comparison between nonlinear and linear preconditioning JFNK method for transient neutronics/thermal-hydraulics coupling problem, Ann. Nucl. Energy 132 (2019) 357-368. https://doi.org/10.1016/j.anucene.2019.04.053
  14. Q. He, Y. Zhang, Z. Liu, et al., The JFNK method for the PWR's transient simulation considering neutronics, thermal hydraulics and mechanics, Nucl. Eng. Technol. 52 (2020) 258-270. https://doi.org/10.1016/j.net.2019.07.029
  15. J. Willert, H. Park, D.A. Knoll, A comparison of acceleration methods for solving the neutron transport k-eigenvalue problem, J. Comput. Phys. 274 (2014) 681-694. https://doi.org/10.1016/j.jcp.2014.06.044
  16. L. Liu, Y. Wu, B. Liu, H. Zhang, J. Guo, F. Li, A modified JFNK method for solving the fundamental eigenmode in k-eigenvalue problem, Ann. Nucl. Energy (2021), 108823.
  17. M. Pernice, H.F. Walker, NITSOL: a Newton iterative solver for nonlinear systems, SIAM J. Sci. Comput. 19 (1998) 302-318. https://doi.org/10.1137/S1064827596303843
  18. L. Zou, et al., Application of Jacobian-free Newton-Krylov method in implicitly solving two-fluid six-equation two-phase flow problems: implementation, validation and benchmark, Nucl. Eng. Des. 300 (2016a) 268-281. https://doi.org/10.1016/j.nucengdes.2016.01.033
  19. L. Zou, et al., Solving phase appearance/disappearance two-phase flow problems with high resolution staggered grid and fully implicit schemes by the Jacobian-free Newton-Krylov Method, Comput. Fluid 129 (2016b) 179-188. https://doi.org/10.1016/j.compfluid.2016.02.008
  20. H. Esmaili, et al., Subchannel analysis of annular fuel assembly using the preconditioned Jacobian-free Newton Krylov methods, Ann. Nucl. Energy 146 (2020), 107616.
  21. Y. Wu, B. Liu, H. Zhang, K. Zhu, et al., Accuracy and efficient solution of helical coiled once-through steam generator model using JFNK method, Ann. Nucl. Energy 159 (2021), 108290.
  22. Y. Niu, et al., Automatic differentiation approach for solving one-dimensional flow and heat transfer problems, Ann. Nucl. Energy 160 (2021), 108361.
  23. X. Cai, D.E. Keyes, Nonlinearly preconditioned inexact Newton algorithms, society for industrial and applied mathematics, J. Sci. Comput. 24 (1) (2002) 183-200. https://doi.org/10.1137/S106482750037620X
  24. F.N. Hwang, X.C. Cai, Improving robustness and parallel scalability of Newton method through nonlinear preconditioning, Domain Decompos. Methods Sci. Eng. 40 (2005) 201-208. https://doi.org/10.1007/3-540-26825-1_17
  25. L. Luo, L. Liu, X. Cai, D.E. Keyes, Fully implicit hybrid two-level domain decomposition algorithms for two-phase flows in porous media on 3D unstructured grids, J. Comput. Phys. 409 (2020), 109312.
  26. Z. Liao, S. Qin, R. Chen, X. Cai, A parallel domain decomposition method for large eddy simulation of blood flow in human artery with resistive boundary condition, Comput. Fluid 232 (1) (2021), 105201.
  27. D. Yang, A comparison of three algorithms applied in thermal-hydraulics and neutronics codes coupling for lbe-cooled fast reactor, Ann. Nucl. Energy 149 (2020), 107789.
  28. Y. Wu, B. Liu, H. Zhang, J. Guo, F. Li, J. Niu, Y. Wang, M. Cui, A new precursor integral method for solving space-dependent kinetic equations in neutronic and thermal-hydraulic coupling system, Sci. Technol. Nucl. Install. 2020 (2020), 8265146.
  29. Y. Wu, B. Liu, H. Zhang, J. Guo, L. Li, A multi-level nonlinear elimination-based JFNK method for multi-scale multi-physics coupling problem in pebble-bed HTR, Ann. Nucl. Energy 176 (2022), 109281.
  30. B. Liu, et al., Finite difference Jacobian based Newton-Krylov coupling method for solving multi-physics nonlinear system of nuclear reactor, Ann. Nucl. Energy 148 (2020), 107670.
  31. D.A. Knoll, D.E. Keyes, 'Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys. 193 (2004) 357-397. https://doi.org/10.1016/j.jcp.2003.08.010
  32. S.C. Eisenstat, H.F. Walker, Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comput. 17 (1996) 16-32. https://doi.org/10.1137/0917003
  33. Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia), 2003.
  34. J. Niu, Studies on Simultaneous Coupling Solutions for Multi-Module High-Temperature Gas-Cooled Reactor, Ph.D thesis, Tsinghua University, 2020.