DOI QR코드

DOI QR Code

Effectiveness of Ni-based and Fe-based cladding alloys in delaying hydrogen generation for small modular reactors with increased accident tolerance

  • 투고 : 2022.07.04
  • 심사 : 2022.09.03
  • 발행 : 2023.01.25

초록

This study investigates the high temperature oxidation behaviour of a Ni-20Cr-1.2Si (wt.%) alloy in steam from 1200 ℃ to 1350 ℃ by Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD). The results demonstrate that exposed Ni-based alloy developed a thin oxide scale, consisted mainly of Cr2O3. The oxidation kinetics obtained from the experimental results was applied to evaluate the hydrogen generation considering a simplified reactor core model with different cladding alloys following an unmitigated Loss-Of-Coolant Accident (LOCA) scenario in a hypothetical Small Modular Reactor (SMR). Overall, experimental data and simulations results show that both Fe-based and Ni-based alloys may enhance cladding survivability, delaying its melting, as well as reducing hydrogen generation under accident conditions compared to Zr-based alloys. However, a substantial neutron absorption occurs when Ni-based alloys are used as cladding for current uranium-dioxide fuel systems, even when compared to Fe-based alloys.

키워드

과제정보

The authors acknowledge the support from CAPES and CNPq and they are grateful to Natalia de Oliveira Souza, Lea Sarita Montagna, Selma Luiza Silva, and Carina Melare Melchor at AMAZUL and Guilherme Fernandes Nielsen at CTMSP.

참고문헌

  1. L.J. Baker, L.C. Just, Studies of metal-water reactions at high temperatures experimental-and theoretical studies of the zirconium-water reaction, in: AEC Research and Development Report, Argonne National Laboratory, Argonne, 1962, https://doi.org/10.2172/4781681. Report No.: ANL-6548). 
  2. J.V. Cathcart, R.E. Pawel, R.A. McKee, R.E. Druschel, G.J. Yurek, J.J. Campbell, et al., Zirconium Metal-Water Oxidation Kinetics, IV: Reaction Rate Studies, Oak Ridge National Laboratory, Oak Ridge, 1977, https://doi.org/10.2172/7317596 (Report No.: ORNL/NUREG-17). 
  3. V.F. Urbanic, T.R. Heidrick, High-temperature oxidation of Zircaloy-2 and Zircaloy-4 in steam, J. Nucl. Mater. 75 (1978) 251-261, https://doi.org/10.1016/0022-3115(78)90006-5. 
  4. A.M. Avelar, C. Giovedi, A.Y. Abe, M.B. Mourao, Oxidation of AISI 304L and 348 stainless steels in water at high temperatures, Mater. Res. 23 (2020), e20200373, https://doi.org/10.1590/1980-5373-MR-2020-0373. 
  5. International Atomic Energy Agency - IAEA, Developments in the Analysis and Management of Combustible Gases in Severe Accidents in Water Cooled Reactors Following the Fukushima Daiichi Accident, IAEA, Vienna, 2020 (Report No.: IAEA-TECDOC-1939). 
  6. International Atomic Energy Agency - IAEA, Analysis of Options and Experimental Examination of Fuels for Water Cooled Reactors with Increased Accident Tolerance (ACTOF): Final Report of a Coordinated Research Project, IAEA, Vienna, 2020 (Report No.: IAEA-TECDOC-1921). 
  7. K.A. Terrani, Accident tolerant fuel cladding development: promise, status, and challenges, J. Nucl. Mater. 501 (2018) 13-30, https://doi.org/10.1016/j.jnucmat.2017.12.043. 
  8. B.A. Pint, K.A. Terrani, Y. Yamamoto, L.L. Snead, Material selection for accident tolerant fuel cladding, Metall. Mater. Trans. 2 (2015) 190-196, https://doi.org/10.1007/s40553-015-0056-7. 
  9. R.B. Rebak, Versatile oxide films protect FeCrAl alloys under normal operation and accident conditions in light water power reactors, JOM 70 (2018) 176-185, https://doi.org/10.1007/s11837-017-2705-z. 
  10. C. Tang, M. Grosse, S. Ulrich, M. Klimenkov, U. Jantsch, H.J. Seifert, M. Stuber, M. Steinbruck, High-temperature oxidation and hydrothermal corrosion of textured Cr2AlC-based coatings on zirconium alloy fuel cladding, Surf. Coat. Technol. 419 (2021), 127263, https://doi.org/10.1016/j.surfcoat.2021.127263. 
  11. C.R.F. Azevedo, Selection of fuel cladding material for nuclear fission reactors, Eng. Fail. Anal. 18 (2011) 1943-1962, https://doi.org/10.1016/j.engfailanal.2011.06.010. 
  12. K.A. Terrani, S.J. Zinkle, L.L. Snead, Advanced oxidation-resistant iron-based alloys for LWR fuel cladding, J. Nucl. Mater. 448 (2014) 420-435, https://doi.org/10.1016/j.jnucmat.2013.06.041. 
  13. C.P. Massey, K.A. Terrani, S.N. Dryepondt, B.A. Pint, Cladding burst behavior of Fe-based alloys under LOCA, J. Nucl. Mater. 470 (2016) 128-138, https://doi.org/10.1016/j.jnucmat.2015.12.018. 
  14. A. Strasser, J. Santucci, K. Lindquist, W. Yario, G. Stern, L. Goldstein, et al., Evaluation of Stainless Steel Cladding for Use in Current Design LWRs Final Report, 1982 (Report No.: EPRI-NP-2642). 
  15. K.A. Unocic, Y. Yamamoto, B.A. Pint, Effect of Al and Cr content on air and steam oxidation of FeCrAl alloys and commercial APMT alloy, Oxid. Met. 87 (2017) 431-441, https://doi.org/10.1007/s11085-017-9745-1. 
  16. T.M. Copeland-Johnson, C.K.A. Nyamekye, S.M. Gill, L. Ecker, N. Bowler, E.A. Smith, R.B. Rebak, Characterization of Kanthal APMT and T91 oxidation at beyond design-basis accident temperatures, Corrosion Sci. 171 (2020), 108598, https://doi.org/10.1016/j.corsci.2020.108598. 
  17. Y. Qiao, P. Wang, W. Qi, S. Du, Z. Liu, F. Meng, X. Zhang, K. Wang, Q. Li, Z. Yao, C. Bai, X. Wang, Mechanism of Al on FeCrAl steam oxidation behavior and molecular dynamics simulations, J. Alloys Compd. 828 (2020), 154310, https://doi.org/10.1016/j.jallcom.2020.154310. 
  18. P.D. Edmondson, S.A. Briggs, Y. Yamamoto, R.H. Howard, K. Sridharan, K.A. Terrani, K.G. Field, Irradiation-enhanced α' precipitation in model FeCrAl alloys, Scripta Mater. 116 (2016) 112-116, https://doi.org/10.1016/j.scriptamat.2016.02.002. 
  19. C. Parisi, Z. Ma, D. Mandelli, N. Anderson, H. Zhang, Risk-informed safety analysis for accident tolerant fuels, Nucl. Sci. Eng. 194 (2020) 748-770, https://doi.org/10.1080/00295639.2020.1732699. 
  20. International Atomic Energy Agency - IAEA, Modelling of Fuel Behaviour in Design Basis Accidents and Design Extension Conditions, IAEA, Vienna, 2020 (Report No.: IAEA-TECDOC-1913). 
  21. Stuckert J., Grosse M., Steinbruck M. Results of the bundle test QUENCH-19 with FeCrAl claddings. Karlsruher Institut fur Technologie (KIT) (Report No.: NUSAFE 3574) http://doi.org/10.5445/IR/1000148370. 
  22. C. Kim, C. Tang, M. Grosse, Y. Maeng, C. Jang, M. Steinbrueck, Oxidation mechanism and kinetics of nuclear-grade FeCrAl alloys in the temperature range of 500-1500 ℃ in steam, J. Nucl. Mater. 564 (2022), 153696 https://www.doi.org/10.1016/j.jnucmat.2022.153696. 
  23. S.V. Bechta, E.V. Krushinov, V.I. Almjashev, et al., Phase diagram of the UO2-FeO1+x system, J. Nucl. Mater. 362 (2007) 46-52, https://www.doi.org/10.1016/j.jnucmat.2006.11.004. 
  24. J.T. Bittel, L.H. Sjodahl, J.F. White, Oxidation of 304L stainless steel by steam and by air, Corrosion 25 (1969) 7-14, https://doi.org/10.5006/0010-9312-25.1.7. 
  25. J. Wang, H. Yeom, P. Humrickhouse, K. Sridharan, M. Corradini, Effectiveness of Cr-coated Zr-alloy clad in delaying fuel degradation for a PWR during a station Blackout event, Nucl. Technol. 206 (2020) 467-477, https://doi.org/10.1080/00295450.2019.1649566. 
  26. A. Gurgen, K. Shirvan, Estimation of coping time in pressurized water reactors for near term accident tolerant fuel claddings, Nucl. Eng. Des. 337 (2020) 38-50, https://doi.org/10.1016/j.nucengdes.2018.06.020. 
  27. A.M. Avelar, M.B. Mourao, M. Maturana, C. Giovedi, A.Y. Abe, R. Pedrassani, J. Su, On the nuclear safety improvement by post-inerting small modular reactor with stainless steel cladding, Ann. Nucl. Energy 149 (2020), 107775, https://doi.org/10.1016/j.anucene.2020.107775. 
  28. Z. Yang, Y. Niu, J. Xue, T. Liu, C. Chang, X. Zheng, Steam oxidation resistance of plasma sprayed chromium-containing coatings at 1200 ℃, Mater. Corros. 70 (2019) 37-47, https://doi.org/10.1002/maco.201810156. 
  29. E. Kashkarov, B. Afornu, D. Sidelev, M. Krinitcyn, V. Gouws, A. Lider, Recent advances in protective coatings for accident tolerant Zr-based fuel claddings, Coatings 11 (2021) 557, https://doi.org/10.3390/coatings11050557. 
  30. D.V. Sidelev, E.B. Kashkarov, M.S. Syrtanov, V.P. Krivobokov, Nickel-chromium (Ni-Cr) coatings deposited by magnetron sputtering for accident tolerant nuclear fuel claddings, Surf. Coat. Technol. 369 (2019) 69-78, https://doi.org/10.1016/j.surfcoat.2019.04.057. 
  31. L.A. Karpyuk, A.M. Savchenko, M. Leont'eva-Smirnova, et al., Steel cladding for VVER fuel pins in the context of accident-tolerant fuel: prospects, Energy 128 (2020) 218-222, https://doi.org/10.1007/s10512-020-00679-3. 
  32. V.N. Rechitskii, A.V. Laushkin, V.V. Medkov, Effect of nitrogen on the properties of Bochvalloy (42KhNM) alloy in the operating and high temperature range, Met. Sci. Heat Treat. 51 (2009) 278, https://doi.org/10.1007/s11041-009-9159-z. 
  33. J.M. Beeston, Mechanical and Physical Properties of Irradiated Type 348 Stainless Steel, United States, 1980. Report No.: CONF-800609-1), https://inis.iaea.org/search/search.aspx?orig_q=RN:11548494. 
  34. S. Han, D.J. Young, Oxidation - nitridation of Ni-Cr-Al alloys, Mater. Res. 7 (1) (2004) 11-16, https://doi.org/10.1590/S1516-14392004000100003. 
  35. D.L. Douglass, J.S. Armijo, The effect of silicon and manganese on the oxidation mechanism of Ni-20 Cr, Oxid. Metals 2 (1970) 207-231, https://doi.org/10.1007/BF00603657. 
  36. T. Dudziak, L. Boron, V. Deodeshmukh, J. Sobczak, N. Sobczak, M. Witkowska, W. Ratuszek, K. Chruꠑsciel, Steam oxidation behavior of advanced steels and Ni-based alloys at 800 ℃, J. Mater. Eng. Perform. 26 (2017) 1044-1056, https://doi.org/10.1007/s11665-017-2535-8. 
  37. A.K. Yadav, C.H. Shin, S.U. Lee, H.C. Kim, Experimental and numerical investigation on thermo-mechanical behavior of fuel rod under simulated LOCA conditions, Nucl. Eng. Des. 337 (2018) 51-65, https://doi.org/10.1016/j.nucengdes.2018.06.023. 
  38. American Nuclear Society - ANS, Decay Heat Power in Light Water Reactors, ANS, La Grange Park, 2014. Report No.: ANSI/ANS-5.1-2014). 
  39. W.G. Luscher, K.J. Geelhood, Material Property Correlations: Comparisons between FRAPCON-3.5, FRAPTRAN-1.5, and MATPRO, Pacific Northwest National Laboratory, Richland, 2014, https://doi.org/10.2172/1030897 (Report No.: NUREG/CR-7024, Rev. 1). 
  40. International Atomic Energy Agency - IAEA, Thermophysical Properties of Materials for Water Cooled Reactors, IAEA, Vienna, 1997 (Report No.: IAEA-TECDOC-949). 
  41. International Atomic Energy Agency - IAEA, Thermophysical Properties Database of Materials for Light Water Reactors and Heavy Water Reactors - Final Report of a Coordinated Research Project, IAEA, Vienna, 2006 (Report No.: IAEA-TECDOC-1496). 
  42. K.G. Field, M.A. Snead, Y. Yamamoto, K.A. Terrani, Handbook on the Material Properties of FeCrAl Alloys for Nuclear Power Production Applications, Oak Ridge: ORNL, 2017, https://doi.org/10.2172/1474581. Report No.: ORNL/TM-2017/186, Rev. 1). 
  43. D.T. Hagrman, C.M. Allison, G.A. Berna, SCDAP/RELAP5/MOD 3.1 Code Manual: MATPRO, in: A Library of Materials Properties for Light-Water-Reactor Accident Analysis, vol. 4, USNRC, Washington, 1995, https://doi.org/10.2172/100327 (Report No.: NUREG/CR-6150-Vol.4). 
  44. G.V. Kulakov, A.V. Vatulin, S.A. Ershov, et al., Prospects for using chromium-nickel alloy 42KhNM in different types of reactors, Energy 130 (2021) 25-28, https://doi.org/10.1007/s10512-021-00768-x. 
  45. K. Monma, H. Suto, H. Oikawa, High-temperature creep of nickel-chromium alloys (on the relation between high-temperature creep and diffusion in nickel base solid solutions, IV), J. Jpn. Inst. Metals 28 (1964) 253-258, https://doi.org/10.2320/jinstmet1952.28.5_253. 
  46. Y. Zhong, K. Lan, H. Lee, B. Zhou, Y. Wang, D.K.L. Tsang, J.F. Stubbins, Investigating creep behavior of Ni-Cr-W alloy pressurized tube at 950 ℃ by using in-situ creep testing system, Nucl. Eng. Technol. 52 (2020) 1481-1485, https://doi.org/10.1016/j.net.2019.12.024. 
  47. M. Kvapilova, P. Kral, J. Dvorak, V. Sklenicka, High temperature creep behaviour of cast nickel-based superalloys INC 713 LC, B1914 and MAR-M247, Metals 11 (2021) 52, https://doi.org/10.3390/met11010152. 
  48. H. Nickel, F. Schubert, H. Schuster, Evaluation of alloys for advanced high-temperature reactor systems, Nucl. Eng. Des. 78 (1984) 251-265, https://doi.org/10.1016/0029-5493(84)90309-1. 
  49. NuScale Power, January, NuScale standard plant design certification application, Chapter Four: Reactor. Available at: https://www.nrc.gov/docs/ML2022/ML20224A492.pdf, 2020. 
  50. B.A. Gurovich, A.S. Frolov, D.A. Mal'tsev, S.V. Fedotova, E.A. Kuleshova, Investigation of the possibility of using 42KhNM alloy as a cladding for a tolerant fuel rod, in: Proceedings of the 15th International Scientific-Practical Conference on Atomic Energy, Sevastopol, Russian Federation, 2019. Available at: https://inis.iaea.org/search/search.aspx?orig_q=RN:52045565. 
  51. H. Yeom, B. Maier, G. Johnson, T. Dabney, M. Lenling, K. Sridharan, High temperature oxidation and microstructural evolution of cold spray chromium coatings on Zircaloy-4 in steam environments, J. Nucl. Mater. 526 (2019), 151737, https://doi.org/10.1016/j.jnucmat.2019.151737. 
  52. J.C. Brachet, E. Rouesne, J. Ribis, T. Guilbert, S. Urvoy, G. Nony, et al., High temperature steam oxidation of chromium-coated zirconium-based alloys: kinetics and process, Corrosion Sci. 167 (2020), 108537, https://doi.org/10.1016/j.corsci.2020.108537. 
  53. H.B. Ma, J. Yan, Y.H. Zhao, T. Liu, Q.S. Ren, Y.H. Liao, et al., Oxidation behavior of Cr-coated zirconium alloy cladding in high-temperature steam above 1200 ℃, NPJ Mater. Degrad. 5 (2021), https://doi.org/10.1038/s41529-021-00155-8. 
  54. J. Zhan, Y. Yang, H. Bi, M. Li, H. Gu, High temperature oxidation behavior of type 444 stainless steel in synthetic automotive exhaust gas, J. Mater. Res. Technol. 12 (2021) 530-541, https://doi.org/10.1016/j.jmrt.2021.03.014. 
  55. M. Le Calvar, M. Lenglet, Etude, par spectroscopies optiques de reflexion dans l'ultraviolet, visible, proche infrarouge et infrarouge, par spectroscopie XPS de l'oxydation d'un alliage Ni-20Cr, J. Nucl. Mater. 173 (1990) 71-77, https://doi.org/10.1016/0022-3115(90)90313-C. 
  56. A. Leong, Q. Yang, S.W. McAlpine, M.P. Short, J. Zhang, Oxidation behavior of Fe-Cr-1.8Si alloys in high temperature steam, Corrosion Sci. 179 (2021), 109114, https://doi.org/10.1016/j.corsci.2020.109114. 
  57. H. Okamoto, O-Zr (Oxygen-Zirconium), J. Phase Equilibria Diffus. 28 (2007) 498, https://doi.org/10.1007/s11669-007-9154-2. 
  58. T. Hidayat, D. Shishin, E. Jak, S.A. Decterova, Thermodynamic reevaluation of the Fe-O system, Calphad 48 (2015) 131-144, https://doi.org/10.1016/j.calphad.2014.12.005. 
  59. O. Kubaschewski, E.L. Evans, C.B. Alcock, Metallurgical Thermochemistry, Pergamon Press Ltd, New York, 1967. 
  60. J.M. Brad, M.B. Shannon, W.H. Paul, Modification of MELCOR for severe accident analysis of candidate accident tolerant cladding materials, Nucl. Eng. Des. 315 (2017) 170-178, https://doi.org/10.1016/j.nucengdes.2017.02.021. 
  61. B.A. Pint, K.A. Terrani, M.P. Brady, T. Cheng, J.R. Keiser, High temperature oxidation of fuel cladding candidate materials in steamehydrogen environments, J. Nucl. Mater. 440 (2013) 420-427, https://doi.org/10.1016/j.jnucmat.2013.05.047. 
  62. Q. Xiao, C. Kim, C. Jang, C. Jeong, H. Kim, J. Chen, W. Heo, On the feasibility of duplex stainless steel 2205 as an accident tolerant fuel cladding material for light water reactors, J. Nucl. Mater. 557 (2021), 153265, https://doi.org/10.1016/j.jnucmat.2021.153265. 
  63. X. Wu, T. Kozlowski, J.D. Hales, Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions, Ann. Nucl. Energy 85 (2015) 763-775, https://doi.org/10.1016/j.anucene.2015.06.032. 
  64. J. Leppanen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent € Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142-150, https://doi.org/10.1016/j.anucene.2014.08.024. 
  65. A.M. Savchenko, M.V. Leontieva-Smirnova, G.V. Kulakov, V.N. Rechitsky, Y.V. Konovalov, A.A. Nikitina, Peculiarities of stainless steels application as ATF in VVER'S, in: TopFuel-2018 Conf. Prague, Czech Republic, 2018. 
  66. N. Chikhi, N.G. Nguyen, J. Fleurot, Determination of the hydrogen source term during the reflooding of an overheated core: calculation results of the integral reflood test QUENCH-03 with PWR-type bundle, Nucl. Eng. Des. 250 (2012) 351-363, https://doi.org/10.1016/j.nucengdes.2012.05.026. 
  67. B.A. Gurovich, A.S. Frolov, I.V. Fedotov, Improved evaluation of ring tensile test ductility applied to neutron irradiated 42XNM tubes in the temperature range of (500 - 1100)℃, Nucl. Eng. Technol. 52 (2020) 1213-1221, https://doi.org/10.1016/j.net.2019.11.019. 
  68. P. Xu, L.Y. Zhao, K. Sridharan, T.R. Allen, Oxidation behavior of grain boundary engineered alloy 690 in supercritical water environment, J. Nucl. Mater. 422 (2012) 143-151, https://doi.org/10.1016/j.jnucmat.2011.12.022. 
  69. A.F. Rowcliffe, L.K. Mansur, D.T. Hoelzer, R.K. Nanstad, Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors, J. Nucl. Mater. 392 (2009) 341-352, https://doi.org/10.1016/j.jnucmat.2009.03.023. 
  70. G.V. Kulakov, Y.V. Konovalov, A.V. Vatulin, et al., High-temperature behavior of irradiated dispersion fuel rods with 42KhNM-alloy cladding, Energy 130 (2022) 208-211, https://doi.org/10.1007/s10512-021-00798-5. 
  71. A. Alraisi, Y. Yi, S. Lee, S.A. Alameri, M. Qasem, C. Paik, C. Jang, Effects of ATF cladding properties on PWR responses to an SBO accident: a sensitivity analysis, Ann. Nucl. Energy 165 (2022), 108784, https://doi.org/10.1016/j.anucene.2021.108784.