DOI QR코드

DOI QR Code

Estimation of genetic parameters for pork belly traits

  • Seung-Hoon Lee (Department of Animal Science and Technology, Chung-Ang University) ;
  • Sang-Hoon Lee (Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center) ;
  • Hee-Bok Park (Department of Animal Resources, Kongju National University) ;
  • Jun-Mo Kim (Department of Animal Science and Technology, Chung-Ang University)
  • Received : 2022.10.11
  • Accepted : 2023.02.24
  • Published : 2023.08.01

Abstract

Objective: Pork belly is a cut of meat with high worldwide demand. However, although the belly is comprised of multiple muscles and fat, unlike the loin muscle, research on their genetic parameters has yet to focus on a representative cut. To use swine breeding, it is necessary to estimate heritability against pork belly traits. Moreover, estimating genetic correlations is needed to identify genetic relationship among the traditional carcass and meat quality traits. This study sought to estimate the heritability of the carcass, belly, and their component traits, as well as the genetic correlations among them, to confirm whether these traits can be improved. Methods: A total of 543 Yorkshire pigs (406 castrated males and 137 females) from 49 sires and 244 dam were used in this study. To estimate genetic parameters, a total of 12 traits such as lean meat production ability, meat quality and pork belly traits were chosen. The heritabilities were estimated by using genome-wide efficient mixed model association software. The statistical model was selected so that farm, carcass weight, sex, and slaughter season were fixed effects. In addition, its genetic parameters were calculated via MTG2 software. Results: The heritability estimates for the 7th belly slice along the whole plate and its components were low to moderate (0.07±0.07 to 0.33±0.07). Moreover, the genetic correlations among the carcass and belly traits were moderate to high (0.28±0.20 to 0.99±0.31). Particularly, the rectus abdominis muscle exhibited a high absolute genetic correlation with the belly and meat quality (0.73±52 to 0.93±0.43). Conclusion: A moderate to high correlation coefficient was obtained based on the genetic parameters. The belly could be genetically improved to contain a larger proportion of muscle regardless of lean meat production ability.

Keywords

Acknowledgement

This work was supported by the Cooperative Research Program for Agriculture Science & Technology Development of the Rural Development Administration, Republic of Korea (PJ01620403).

References

  1. Nam KC, Jo C, Lee M. Meat products and consumption culture in the East. Meat Sci 2010;86:95-102. https://doi.org/10.1016/j.meatsci.2010.04.026 
  2. USDA/ERS. Livestock & Meat International Trade Data Annual and Cumulative Year-to-year U.S. 2017.
  3. Cho S, Park B, Ngapo T, et al. Effect of meat appearance on South Korea consumers' choice of pork chops determined by image methodology. J Sens Stud 2007;22:99-114. https://doi.org/10.1111/j.1745-459X.2007.00098.x 
  4. Oh SH, See MT. Pork preference for consumers in China, Japan and South Korea. Asian-Australas J Anim Sci 2012;25:143-50. https://doi.org/10.5713/ajas.2011.11368 
  5. Lee SH, Kim JM. Breeding potential for pork belly to the novel economic trait. J Anim Sci Technol 2023;65:1-15. https://doi.org/10.5187/jast.2022.e118 
  6. Marcoux M, Pomar C, Faucitano L, Brodeur C. The relationship between different pork carcass lean yield definitions and the market carcass value. Meat Sci 2007;75:94-102. https://doi.org/10.1016/j.meatsci.2006.07.001 
  7. Soladoye PO, Shand PJ, Aalhus JL, Gariepy C, Juarez M. Review: Pork belly quality, bacon properties and recent consumer trends. Can J Anim Sci 2015;95:325-40. https://doi.org/10.4141/cjas-2014-121 
  8. Miar Y, Plastow GS, Moore SS, et al. Genetic and phenotypic parameters for carcass and meat quality traits in commercial crossbred pigs. J Anim Sci 2014;92:2869-84. https://doi.org/10.2527/jas.2014-7685 
  9. Person RC, McKenna DR, Griffin DB, et al. Benchmarking value in the pork supply chain: Processing characteristics and consumer evaluations of pork bellies of different thicknesses when manufactured into bacon. Meat Sci 2005;70: 121-31. https://doi.org/10.1016/j.meatsci.2004.12.012 
  10. Bahelka I, Oravcova M, Hanusova E, Demo P. The effect of sex and terminal sire line on carcass characteristics of pork belly. Arch Anim Breed 2011;54:264-70. https://doi.org/10.5194/aab-54-264-2011 
  11. Lee EA, Kang JH, Cheong JH, et al. Evaluation of whole pork belly qualitative and quantitative properties using selective belly muscle parameters. Meat Sci 2018;137:92-7. https://doi.org/10.1016/j.meatsci.2017.11.012 
  12. Hermesch S. Genetic relationships between composition of pork bellies and performance, carcase and meat quality traits. Animal 2008;2:1178-85. https://doi.org/10.1017/S1751731108002334 
  13. Willson HE, Rojas de Oliveira H, Schinckel AP, Grossi D, Brito LF. Estimation of genetic parameters for pork quality, novel carcass, primal-cut and growth traits in Duroc pigs. Animals 2020;10:779. https://doi.org/10.3390/ani10050779 
  14. Roufs JAJ. Light as a true visual quantity : principles of measurement. Paris, France: CIE (Commission Internationale de l'Eclairage) publication; 1978 
  15. Honikel K. How to measure the water-holding capacity of meat? Recommendation of standardized methods. In: Tarrant PV, Eikelenboom G, Monin G, editors. Evaluation and control of meat quality in pigs: current Topics in Veterinary Medicine and Animal Science, vol 38. Dordrecht, The Netherlands: Springer; 1987. p. 129-42. https://doi.org/10.1007/978-94-009-3301-9_11 
  16. Chang CC, Chow CC, Tellier LC, et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 2015;4:s13742-015-0047-8. https://doi.org/10.1186/s13742-015-0047-8 
  17. Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet 2012;44:821-4. https://doi.org/10.1038/ng.2310 
  18. Lee SH, van der Werf JHJ. MTG2: an efficient algorithm for multivariate linear mixed model analysis based on genomic information. Bioinformatics 2016;32:1420-2. https://doi.org/10.1093/bioinformatics/btw012 
  19. Choe JH, Yang HS, Lee SH, Go GW. Characteristics of pork belly consumption in South Korea and their health implication. J Anim Sci Technol 2015;57:22. https://doi.org/10.1186/s40781-015-0057-1 
  20. Hermesch S, O'Shea JM. Genetic parameters for characteristics of pork bellies. In: Association for the Advancement of Animal Breeding and Genetics; 2005. pp. 137-40. 
  21. Kang HS, Lopez BM, Kim TH, et al. Estimation of genetic parameters for pork belly components in Yorkshire pigs. Asian-Australas J Anim Sci 2015;28:922-5. https://doi.org/10.5713/ajas.14.0678 
  22. Te Pas MFW, Soumillion A, Harders FL, et al. Influences of myogenin genotypes on birth weight, growth rate, carcass weight, backfat thickness, and lean weight of pigs. J Anim Sci 1999;77:2352-6. https://doi.org/10.2527/1999.7792352x 
  23. Taylor-Jones JM, McGehee RE, Rando TA, et al. Activation of an adipogenic program in adult myoblasts with age. Mech Ageing Dev 2002;123:649-61. https://doi.org/10.1016/s0047-6374(01)00411-0 
  24. Chen P, Baas TJ, Mabry JW, Dekkers JCM, Koehler KJ. Genetic parameters and trends for lean growth rate and its components in U.S. Yorkshire, Duroc, Hampshire, and Landrace pigs. J Anim Sci 2002;80:2062-70. https://doi.org/10.1093/ansci/80.8.2062 
  25. Do CH, Park CH, Wasana N, et al. Genetic and phenotypic relationships of live body measurement traits and carcass traits in crossbred pigs of Korea. Korean J Agric Sci 2014;41:229-36. https://doi.org/10.7744/cnujas.2014.41.3.229 
  26. Newcom DW, Baas TJ, Mabry JW, Goodwin RN. Genetic parameters for pork carcass components. J Anim Sci 2002;80:3099-106. https://doi.org/10.2527/2002.80123099x 
  27. Lundeheim N, Johansson K, Andersson K. Estimated phenotypic and genetic parameters based on data from the Swedish pig progeny testing stations. Acta Agric Scand 1980;30:183-8. https://doi.org/10.1080/00015128009435263 
  28. Cabling MM, Kang HS, Lopez BM, et al. Estimation of genetic associations between production and meat quality traits in Duroc pigs. Asian-Australas J Anim Sci 2015;28:1061-5. https://doi.org/10.5713/ajas.14.0783 
  29. Stern S, Johansson K, Rydhmer L, Andersson K. Performance testing of pigs for lean tissue growth rate in a selection experiment with low and high protein diets: II. Correlated responses of lean percentage and growth rate. Acta Agric Scand A Anim Sci 1994;44:1-7. https://doi.org/10.1080/09064709409410174 
  30. Falconer DS, TFC Mackay. Introduction to quantitative genetics. Essex, UK: Longman; 1996. 
  31. Lo LL, McLaren DG, McKeith FK, Fernando RL, Novakofski J. Genetic analyses of growth, real-time ultrasound, carcass, and pork quality traits in Duroc and Landrace pigs: II. Heritabilities and correlations. J Anim Sci 1992;70:2387-96. https://doi.org/10.2527/1992.7082387x 
  32. Lee SH, Kim S, Kim JM. Genetic correlation between biopsied and post-mortem muscle fibre characteristics and meat quality traits in swine. Meat Sci 2022;186:108735. https://doi.org/10.1016/j.meatsci.2022.108735 
  33. Hermesch S, Luxford BG, Graser HU. Genetic parameters for lean meat yield, meat quality, reproduction and feed efficiency traits for Australian pigs: 1. Description of traits and heritability estimates. Livest Prod Sci 2000;65:239-48. https://doi.org/10.1016/S0301-6226(00)00150-0 
  34. Sellier P, Monin G. Genetics of pig meat quality: a review. J Muscle Foods 1994;5:187-219. https://doi.org/10.1111/j.1745-4573.1994.tb00530.x 
  35. Kim JM, Lim KS, Ko KB, Ryu YC. Estimation of pork quality in live pigs using biopsied muscle fibre number composition. Meat Sci 2018;137:130-3. https://doi.org/10.1016/j.meatsci.2017.11.020 
  36. Klimas R, Klimiene A. Phenotypic correlation of pig productivity traits. The problems of modern genetics in Lithuania. Proceedings of the conference of the Lithuanian Society of Geneticists and Breeders; 2000; Kaunas, Lithuania. 
  37. Sonesson AK, De Greef KH, Meuwissen THE. Genetic parameters and trends of meat quality, carcass composition and performance traits in two selected lines of large white pigs. Livest Prod Sci 1998;57:23-32. https://doi.org/10.1016/S0301-6226(98)00163-8 
  38. Fredeen HT. Yields and dimensions of pork bellies in relation to carcass measurements. J Anim Sci 1980;51:59-68. https://doi.org/10.2527/jas1980.51159x 
  39. Kanis E, De Greef KH, Hiemstra A, van Arendonk JAM. Breeding for societally important traits in pigs. J Anim Sci 2005;83:948-57. https://doi.org/10.2527/2005.834948x 
  40. Seman DL, Barron WNG, Matzinger M. Evaluating the ability to measure pork fat quality for the production of commercial bacon. Meat Sci 2013;94:262-6. https://doi.org/10.1016/j.meatsci.2013.01.009 
  41. Smith GS, West RL, Carpenter ZL. Factors affecting desirability of bacon and commercially-processed pork bellies. J Anim Sci 1975;41:54-65. https://doi.org/10.2527/jas1975.41154x 
  42. Sather AP, Jones SDM, Robertson WM,Zawadski S. Sex effects on fat hardness meter readings of market weight pigs. Can J Anim Sci 1995;75:509-15. https://doi.org/10.4141/cjas95-077 
  43. Vonada ML, Bidner BS, Belk KE, et al. Quantification of pork belly and boston butt quality attribute preferences of South Korean customers. J Anim Sci 2000;78:2608-14. https://doi.org/10.2527/2000.78102608x 
  44. Choi YM, Ryu YC, Kim BC. Effect of myosin heavy chain isoforms on muscle fiber characteristics and meat quality in porcine longissimus muscle. J Muscle Foods 2006;17:413-27. https://doi.org/10.1111/j.1745-4573.2006.00060.x 
  45. Kim GD, Jeong JY, Jung EY, Yang HS, Lim HT, Joo ST. The influence of fiber size distribution of type IIB on carcass traits and meat quality in pigs. Meat Sci 2013;94:267-73. https://doi.org/10.1016/j.meatsci.2013.02.001 
  46. Ryu YC, Kim BC. The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig longissimus dorsi muscle. Meat Sci 2005;71:351-7. https://doi.org/10.1016/j.meatsci.2005.04.015 
  47. Kim JM, Choi BD, Kim BC, Park SS, Hong KC. Associations of the variation in the porcine myogenin gene with muscle fibre characteristics, lean meat production and meat quality traits. J Anim Breed Genet 2009;126:134-41. https://doi.org/10.1111/j.1439-0388.2008.00724.x 
  48. Kim JM, Lee KT, Lim KS, Park EW, Lee YS, Hong KC. Effects of p.C430S polymorphism in the PPARGC1A gene on muscle fibre type composition and meat quality in Yorkshire pigs. Anim Genet 2010;41:642-5. https://doi.org/10.1111/j.1365-2052.2010.02042.x