DOI QR코드

DOI QR Code

A Study on Measuring Method of Wind Resources for Wind Farm Design

풍력단지 설계를 위한 풍황자원의 측정방법 연구

  • 한성민 (국립목포대학교 대학원) ;
  • 김건웅 (비전플러스) ;
  • 김상만 ((사)에너지밸리산학융합원) ;
  • 문채주 (국립목포대학교 해상풍력산업연구원)
  • Received : 2023.03.22
  • Accepted : 2023.06.17
  • Published : 2023.06.30

Abstract

The representative equipments currently used for weather observations are meteorological masters and wind lidars. According to international regulations, meteorological masters can be used for standalone measurements, but in case of wind lidars, it is mandatory to install a meteorological master that matches the height of the bottom of the wind turbine blade or a 40m meteorological masters and correct the measurement data. Turbulence flow occurs frequently at altitudes below 100m due to its nature, and wind lidars are more susceptible to the effects of turbulence than meteorological masters. However, while the turbulence intensity for meteorological masters is specified by international regulations, there is no separated specification for wind lidars. This study collected data measured under the same conditions using both meteorological masters and wind LiDARs, analyzed the uncertainties and turbulence intensity ratio. The analysis of the data showed that there were partial sections where the proportion of turbulent flow intensity exceeded 3%. Therefore, it is suggested to include a specification for the turbulence intensity error rate for wind LiDARs in the international regulations.

현재 기상관측에 사용되는 대표적인 장비는 기상탑과 윈드라이다가 사용되고 있다. 국제 규정에 의하면 기상탑은 단독 측정이 가능하나 윈드라이다 경우 40m 기상탑 혹은 풍력발전기 블레이드 최하단의 높이에 맞는 기상탑을 필수로 설치하고 측정데이타를 보정하여야 한다. 난류는 특성상 100m 이하의 고도에서 빈번하게 발생하며 기상탑 보다는 윈드라이다가 난류의 영향을 많이 받는다. 그럼에도 불구하고 기상탑에 대한 난류 강도는 국제 규정에 명시되어 있으나 윈드라이다 대해서는 별도로 명시하지 않고 있다. 본 연구는 동일한 조건에서 기상탑과 윈드라이다에서 측정된 데이터를 수집하고 불확도 및 난류 강도 비율을 분석한다. 데이터를 분석한 결과 난류 강도 비율이 3%를 초과하는 구간이 부분적으로 존재한다. 따라서 윈드라이다에 대한 난류강도 오차율을 국제 규정에 명시할 것을 제안한다.

Keywords

Acknowledgement

본 과제(결과물)는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다.(2021RIS-002)

References

  1. S. Kim, G. Ryu, Y. Kim, S. Kim, and C. Moon, "Sensitivity analysis of wake diffusion patterns in mountainous wind farms according to wake model characteristics on computational fluid dynamics," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 2, 2022, pp. 265-278.
  2. S. Kim, G. Ryu, Y. Kim, S. Kim, and C. MoonT, "Selecting the geographical optimal safety site for offshore wind farms to reduce the risk of coastal disasters in the southwest coast of south Korea," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 5, 2022, pp. 1003-1012.
  3. S. Kim, G. Ryu, Y. Kim, H. Son, and C. Moon, "A study on the optimal site selection by constraint mapping and park optimization for offshore wind farm in the southwest coastal area," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 6, 2022, pp. 1145-1156.
  4. Y. Somg, C. Kim, I. Paek, and H. Kim, "Evaluation of implementation potential of offshore wind farm capacity in Korea using national wind map and commercial wind farm design tool," J. of the Korean Solar Energy Society, vol. 36, no. 5, 2016, pp. 21-29. https://doi.org/10.7836/kses.2016.36.4.021
  5. M. Kim, T. Song, and I. Paek, "Development of an in-house code to predict annual energy production and economic analysis of wind farms using CFD results," J. of Wind Energy, vol. 11. no. 3, 2020, pp. 23-30.
  6. J. Kim and M. Kim, "A comparison of offshore met-mast and LiDAR wind measurements at various heights," J. of Korean Society of Coastal and Ocean Engineers, vol. 29, no. 1, 2017, pp. 12-19. https://doi.org/10.9765/KSCOE.2017.29.1.12
  7. U. Bunse and H. Mellinghoff, "Assessment of wind profile effects for a set of site calibration measurements following IEC 61400-12-1," DEWI-Magazin, J. Issue 32, 2008, pp. 27-31.
  8. P. Sharma, V. Warudkar, and S. Ahmed, "Application of lidar and measure correlate predict method in offshore wind resource assessments," J. of Cleaner Production, vol. 215, 2019, pp. 534-543. https://doi.org/10.1016/j.jclepro.2018.12.267
  9. J. Lee, S. Kang, G. Lee, H. Kim, S. Kim, Y. Ahn, and N. Kyong, "Validation of floating LiDAR system for development of offshore wind farms," New & Renewable Energy, vol. 16, no. 3, 2020, pp. 485-492.
  10. T. Kogaki, K. Sakurai, S. Shimada, Y. Otake, K. Kondo, and E. Fujita, "Field measurements of wind characteristics using LiDAR on a wind farm with downwind turbines installed in a complex terrain region," Energies, vol. 13, article 5135, 2020, pp. 1-24. https://doi.org/10.3390/en13195135
  11. C. Yue, Y. Chiu. C. Tu, and T. Lin, "Evaluation of an offshore wind farm by using data from the weather station, floating LiDAR, Mast, and MERRA," Energies, vol. 13, article 183, 2020, pp. 1-20. https://doi.org/10.3390/en13010185
  12. B. Hwang, Understanding Modern Wind Turbine. Seoul: Ajin, 2010.