DOI QR코드

DOI QR Code

Molecular and Morphological Characterization of Three New Fungal Species of the Class Sordariomycetes from Korea

  • Kallol Das (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Jae-Ho Ban (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • So-Young Choi (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Seung-Yeol Lee (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Hee-Young Jung (College of Agriculture and Life Sciences, Kyungpook National University)
  • Received : 2023.03.09
  • Accepted : 2023.03.20
  • Published : 2023.03.31

Abstract

Three fungal strains belonging to the class Sordariomycetes were isolated from soil collected on Jeju Island and Gyeongsangbuk-do, Korea. They were identified as Diaporthe endophytica (KNU-JJ-1809), Faurelina indica (KNU-JJ-1830), and Trichoderma ivoriense (KNU-4-KH1). KNU-JJ-1809 produced beta conidia that were straight, curved, hyaline, smooth-walled, with a diameter of 16.5-25.0×0.6-1.7 ㎛. The conidia of strain KNU-JJ-1830 were hyaline to light green, thin, clavate, round, truncate base, had guttules at both ends, with a diameter of 2.5-5.2×1.7-3.8 ㎛. The conidia of strain KNU-4-KH1 were oblong or ellipsoidal, smooth-walled, greenish, with a diameter of 2.2-4.4×2.2-3.6 ㎛. Internal transcribed spacer regions, partial large subunit, translation elongation factor 1-alpha, β-tubulin, and calmodulin genes were used to confirm the strains, and their cultural and morphological characteristics. To our knowledge, this is the first report on D. endophytica, F. indica, and T. ivoriense in Korea.

Keywords

Acknowledgement

This study was supported by grants from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment of the Republic of Korea (NIBR201801105; NIBR201902112).

References

  1. Eriksson OE, Winka K. Supraordinal taxa of Ascomycota. Myconet 1997;1:1-16.
  2. Maharachchikumbura SSN, Hyde KD, Jones EB, McKenzie EHC, Bhat JD, Dayarathne MC, Huang SK, Norphanphoun C, Senanayake IC, Perera RH, et al. Families of Sordariomycetes. Fungal Divers 2016;79:1-317. https://doi.org/10.1007/s13225-016-0369-6
  3. Udayanga D, Castlebury LA, Rossman AY, Chukeatirote E, Hyde KD. Insights into the genus Diaporthe, phylogenetic species delimitation in the D. eres species complex. Fungal Divers 2014;67:203-29. https://doi.org/10.1007/s13225-014-0297-2
  4. Mostert L, Crous PW, Kang JC, Phillips AL. Species of Phomopsis and a Libertella sp. occurring on grapevines with specific reference to South Africa: morphological, cultural, molecular and pathological characterization. Mycologia 2001;93:146-67. https://doi.org/10.1080/00275514.2001.12061286
  5. Santos JM, Correia VG, Phillips AJL. Primers for mating-type diagnosis in Diaporthe and Phomopsis: their use in teleomorph induction in vitro and biological species definition. Fungal Biol 2010;114:255-70. https://doi.org/10.1016/j.funbio.2010.01.007
  6. Gomes RR, Glienke C, Videira SIR, Lombard L, Groenewald JZ, Crous PW. Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 2013;31:1-41. https://doi.org/10.3767/003158513X666844
  7. Locquin-Linard M. Faurelina, nouveau genre d'Ascomycetes (Chadefaudiellaceae?). Rev Mycol 1975;39:125-9.
  8. Parguey-Leduc A, Locquin-Linard M. L'ontogenie et la structure des peritheces de Faurelina fimigenes Locquin-Linard. Rev Mycol 1976;40:161-75.
  9. von Arx JA. Notes on Microascaceae with the description of two species. Persoonia 1978;10:23-31.
  10. Tang AMC, Jeewon R, Hyde KD. Phylogenetic utility of protein (RPB2, beta-tubulin) and ribosomal (LSU, SSU) gene sequences in the systematics of Sordariomycetes (Ascomycota, Fungi). Antonie van Leeuwenhoek 2007;91:327-49. https://doi.org/10.1007/s10482-006-9120-8
  11. Qin WT, Zhuang WY. Seven wood-inhabiting new species of the genus Trichoderma (Fungi, Ascomycota) in Viride clade. Sci Rep 2016;6:27074.
  12. Jaklitsch WM. European species of Hypocrea Part I. The green-spored species. Stud Mycol 2009;63:1-91. https://doi.org/10.3114/sim.2009.63.01
  13. Druzhinina IS, Kubicek CP. Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters? J Zhejiang Univ Sci 2005;B6:100-12. https://doi.org/10.1631/jzus.2005.B0100
  14. von Arx JA, Mukerji KG, Singh N. Faurelina indica sp.nov. Sydowia 1981;34:39-41.
  15. Nirenberg H. Untersuchungen uber die morphologische und biologische differenzierung in der Fusarium-sektion Liseola. Mitt Biol Bundesanst Land-u Forstwirtsch Berlin-Dahlem 1976;169:1-17.
  16. Zhang GZ, Zhang XJ, Zhou FY, Wang JN, Wu XQ, Zhao XY, Xie XY, Zhou HZ. Two Chinese new records of the genus Trichoderma in the Stromaticum clade. Microbiology China 2018;45:1120-6.
  17. Gardes M, Bruns TD. ITS primers with enhanced specificity for Basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 1993;2:113-8. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  18. White T, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York: Academic Press, Inc.; 1990. p. 315-22.
  19. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 1990;172:4238-46. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  20. Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous Ascomycetes. Mycologia 1999;91:553-6. https://doi.org/10.1080/00275514.1999.12061051
  21. Jaklitsch WM, Komon M, Kubicek CP, Druzhinina IS. Hypocrea voglmayrii sp. nov. from the Austrian Alps represents a new phylogenetic clade in Hypocrea/Trichoderma. Mycologia 2005;97:1365-78. https://doi.org/10.1080/15572536.2006.11832743
  22. Glass NL, Donaldson G. Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 1995;61:1323-30. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  23. O'Donnell K, Cigelnik E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 1997;7:103-16. https://doi.org/10.1006/mpev.1996.0376
  24. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111-20. https://doi.org/10.1007/BF01731581
  25. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870-4. https://doi.org/10.1093/molbev/msw054
  26. Udayanga D, Liu XZ, McKenzie EHC, Chukeatirote E, Bahkali AHA, Hyde KD. The genus Phomopsis: biology, applications, species concepts and names of common phytopathogens. Fungal Divers 2011;50:189-225. https://doi.org/10.1007/s13225-011-0126-9
  27. Huang F, Hou X, Dewdney MM, Fu Y, Chen G, Hyde KD, Li H. Diaporthe species occurring on citrus in China. Fungal Divers 2013;61:237-50. https://doi.org/10.1007/s13225-013-0245-6
  28. Sebastianes FLS, Lacava PT, Favaro LCL, Rodrigues MBC, Araujo WL, Azevedo JL, Pizzirani-Kleiner AA. Genetic transformation of Diaporthe phaseolorum, an endophytic fungus found in mangrove forests, mediated by Agrobacterium tumefaciens. Curr Genet 2012;58:21-33. https://doi.org/10.1007/s00294-011-0362-2
  29. Iriart I, Binois R, Fior R, Blanchet D, Berry A, Cassaing S, Amazan E, Papot E, Carme B, Aznar C, et al. Eumycetoma caused by Diaporthe phaseolorum (Phomopsis phaseoli): a case report and a mini-review of Diaporthe/Phomopsis spp. invasive infections in humans. Clin Microbiol Infect 2011;17:1492-4. https://doi.org/10.1111/j.1469-0691.2011.03568.x
  30. Santos PJ, Savi DC, Gomes RR, Goulin EH, Da Costa Senkiv C, Tanaka FA, Almeida AM, Galli-Terasawa L, Kava V, Glienke C. Diaporthe endophytica and D. terebinthifolii from medicinal plants for biological control of Phyllosticta citricarpa. Microbiol Res 2016;186:153-60. https://doi.org/10.1016/j.micres.2016.04.002
  31. Melo RFR, Miller AN, Maia LC. First records of Faurelina in the Neotropics. Mycotaxon 2016;131:679-85. https://doi.org/10.5248/131.679
  32. Chaverri P, Samuels GJ. Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): Species with green ascospores. Stud Mycol 2003;48:1-116.
  33. Saravanakumar K, Kathiresan K. Bioconversion of lignocellulosic waste to bioethanol by Trichoderma and yeast fermentation. 3 Biotech 2014;4:493-9. https://doi.org/10.1007/s13205-013-0179-4
  34. Adnan LA, Sathishkumar P, Yusoff AR, Hadibarata T, Ameen F. Rapid bioremediation of Alizarin Red Sand Quinizarine Green SS dyes using Trichoderma lixii F21 mediated by biosorption and enzymatic processes. Bioprocess Biosyst Eng 2017;40:85-97. https://doi.org/10.1007/s00449-016-1677-7
  35. Komon-Zelazowska M, Bissett J, Zafari D, Hatvani L, Manczinger L, Woo S, Lorito M, Kredics L, Kubicek CP, Druzhinina IS. Genetically closely related but phenotypically divergent Trichoderma species cause green mold disease in oyster mushroom farms worldwide. Appl Environ Microbiol 2007;73:7415-26. https://doi.org/10.1128/AEM.01059-07
  36. Sandoval-Denis M, Sutton DA, Cano-Lira J, Genea J, Fothergill AW, Wiederhold NP, Guarro J. Phylogeny of the clinically relevant species of the emerging fungus Trichoderma and their antifungal susceptibilities. J Clin Microbiol 2014;52:2112-25. https://doi.org/10.1128/JCM.00429-14