DOI QR코드

DOI QR Code

Ti-Mo-Fe 합금의 Fe 함량에 따른 기계적 특성과 전기화학적 특성 비교·분석

Effect of Fe Content on Mechanical and Electrochemical Properties of Ti-Mo-Fe Alloys

  • 김지원 (순천대학교 신소재공학과) ;
  • 박정연 (순천대학교 신소재공학과) ;
  • 강민 ((주) 엠티아이지) ;
  • 박지환 ((주) 엠티아이지) ;
  • 이동근 (순천대학교 신소재공학과)
  • Ji-Won Kim (Department of Materials Metallurgical Engineering, Suncheon University) ;
  • Jeong-Yeon Park (Department of Materials Metallurgical Engineering, Suncheon University) ;
  • Min Gang (Material Technical Innovation Group (MTIG)) ;
  • Ji-Hwan Park (Material Technical Innovation Group (MTIG)) ;
  • Dong-Geun Lee (Department of Materials Metallurgical Engineering, Suncheon University)
  • 투고 : 2023.05.12
  • 심사 : 2023.05.25
  • 발행 : 2023.05.30

초록

β titanium alloys containing β stabilizing elements such as V, Nb, Ta, Mo and Fe are widely used etc, due to their excellent specific strength, corrosion resistance, fatigue strength and easy formability. New metastable β titanium alloys are developed containing low-cost elements (Mo and Fe) in this study. Fe element is a strong β-stabilizer which can affect the mechanical and electrochemical properties of Ti-5Mo-xFe (x = 1, 4 wt%) alloys. These properties were analyzed in connection with microstructure and phase distribution. Ti-5Mo-4Fe alloy showed higher compression yield stress and maximum stress than Ti-5Mo-1Fe alloy due to solid-solution hardening and grain refinement hardening effect. As Fe element increased, Fe oxide formation and reduction of ${\bar{Bo}}$ (bond order) value affect the decrease of corrosion resistance. Ti-5Mo-xFe alloys were more excellent than Ti-6Al-4V ELI alloy.

키워드

과제정보

본 연구는 산업통상자원부(MOTIE)와 한국산업기술평가관리원(KEIT)의 산업기술혁신사업의 연구지원으로 수행되었으며(No. 20010047), 이에 감사드립니다.

참고문헌

  1. R. W. Schutz, C. F. Baxter, P. L. Boster, and F. H. Fores : Jom, 53 (2001) 33.
  2. P. S. Jo, C. S. Youn, H. W. Hwang, and D. G. Lee : Journal of the Korean Society for Heat Treatment, 34(2) (2021) 66.
  3. C. Leyens and M. Peters (Eds.) : Titanium and titanium alloys: fundamentals and applications. Wiley-vch (2006).
  4. J. D. Cotton, R. D. Briggs, R. R. Boyer, and S. Tamirisakandala : Jom, 67(6) (2015) 1281.
  5. H. Attar, M. J. Bermingham, and S. Ehtemam-Haghighi : Journal of Alloys and Compounds, 853 (2021) 156768.
  6. S. Trasatti : Advances in Electrochemical Science and Engineering, 2 (1992) 1.
  7. J. J. Bae, J. T. Yeom, C. H. Park, J. K. Hong, S. W. Kim, S. Y. Yoon, and S. W. Lee : Journal of the Korean Society for Heat Treatment, 29(6) (2016) 264.
  8. M. Gang, H. G. Kwon, D. H. Kim, J. H. Park, and M. H. Oh : Journal of the Korean Society for Heat Treatment, 34(1) (2021) 17.
  9. M. Niinomi, D. Kuroda, M. Morinaga, Y. Kato, and T. Yashiro : Materials Science and Engineering: A, 243(1-2) (1998) 244.
  10. M. Morinaga, M. Kato, T. Kamimura, M. Fukumoto, I. Harada, and K. Kubo : Titanium'92: Science and Technology, (1993) 217.
  11. H. Zhang, C. Wang G. Zhou, S. Zhang, and L. Chen : Journal of Materials Research and Technology, 18 (2022) 5257.
  12. X. Li, T. Sugui, B. Xianyu, and C. Liqing : Materials Science and Engineering: A, 559 (2013) 401. https://doi.org/10.1016/j.msea.2012.08.116
  13. Y. C. Lin, Y. Tang, X. Y. Zhang, C. Chen, H. Yang, and K. C. Zhou : Vacuum, 159 (2019) 191-199. https://doi.org/10.1016/j.vacuum.2018.10.035
  14. C. Li, D. G. Lee, X. Mi, W. Ye, S. Hui, and Y. T. Lee : Journal of Alloys and Compounds, 549 (2013) 152.
  15. Zhou, Y. L. and D. M. Luo :Journal of Alloys and Compounds, 509(21) (2011) 6267.
  16. A. A. Ghoneim, A. S. Mogoda, and K. A. Awad : Int. J. Electrochem. Sci, 7 (2012) 6539.
  17. J. Yang, Y. Song, K. Dong, and E. H. Han : Corrosion Reviews, 41(1) (2023) 5.
  18. X. H. Min, S. Emura, T. nishimura, K. Tsuchiya, and K. Tsuzaki : Materials Science and Engineering: A, 527(21-22) (2010) 5499.
  19. J. Niu, Y. Guo, K. Li, W. Liu, Z. Dan, Z. Sun, H. Chang, and L. Zhou : Materials Science and Engineering: C, 122 (2021) 111917. https://doi.org/10.1016/j.msec.2021.111917