DOI QR코드

DOI QR Code

음식물류폐기물 혼합 석회처리비료 사용량에 따른 배추(Brassica rapa L.) 수량 및 토양 화학성 평가

Evaluation of the Effect of Different Application Ratios of Lime-treated Fertilizer Mixed with Food Waste on Chinese Cabbage (Brassica rapa L.) Yield and Soil Chemical Properties

  • 정영재 (농촌진흥청 국립농업과학원 토양비료과) ;
  • 이상금 (충청북도 농업기술원) ;
  • 김성헌 (농촌진흥청 국립농업과학원 토양비료과) ;
  • 전상호 (농촌진흥청 국립농업과학원 토양비료과) ;
  • 이윤혜 (농촌진흥청 국립농업과학원 토양비료과) ;
  • 권순익 (농촌진흥청 국립농업과학원 토양비료과) ;
  • 심재홍 (농촌진흥청 국립농업과학원 토양비료과)
  • Young-Jae Jeong (Division of Soil and Fertilizer, National Institute of Agricultural Sciences, RDA) ;
  • Sang-Geum Lee (Division of Extention Planning, Chungcheongbuk-do Agricultural Research & Extension Service) ;
  • Seong-Heon Kim (Division of Soil and Fertilizer, National Institute of Agricultural Sciences, RDA) ;
  • Sang-Ho Jeon (Division of Soil and Fertilizer, National Institute of Agricultural Sciences, RDA) ;
  • Youn-Hae Lee (Division of Soil and Fertilizer, National Institute of Agricultural Sciences, RDA) ;
  • Soon-Ik Kwon (Division of Soil and Fertilizer, National Institute of Agricultural Sciences, RDA) ;
  • Jae-Hong Shim (Division of Soil and Fertilizer, National Institute of Agricultural Sciences, RDA)
  • 투고 : 2023.04.23
  • 심사 : 2023.05.10
  • 발행 : 2023.06.01

초록

본 연구는 석회처리비료 사용량에 따른 배추의 생산량 및 양분 흡수 지수, 토 화학성을 종합적으로 평가하고자 하였다. 본 연구에서 사용한 토양의 pH는 약 4.7로 작물 생육에 적절하지 못한 산성토양이었다. 본 연구 결과, LTF1 처리구 토양 pH가 6.5~6.9로 배추 생육에 적정한 범위까지 상승하였으며, 토양 양분 공급 등의 효과를 가져왔다. 이와같은 토양 개량 효과로 인하여 NPK 처리구에 비하여 LTF1 처리구의 양분 흡수 지수는 약 10%, 배추 생산 지수는 10~20% 이상 높았다. 반면, 석회처리비료를 정량 이상 사용하였을 때 토양의 pH, EC가 적정 범위 이상 상승하였으며, 무기태 질소, 유효인산 등의 토양 양분 함량이 감소하였다. 또한, 배추 생육 조사 결과 LTF8 처리구가 NPK 처리구에 비하여 양분 흡수 지수는 약 10% 감소하였으며, 배추 생산 지수는 5~20% 감소하였다. 이는 석회처리비료과량 사용에 따른 양분 공급 저해 등이 원인이 되어 생산지수가 감소한 것으로 판단된다. 본 연구 결과, 작물 수량 증가와 산성토양 개량 효과에는 석회처리비료를 석회소요량 기준 정량 사용하는 것이 적합하다고 판단된다. 따라서, 본 연구 결과를 바탕으로 향후 석회처리비료의 무기질비료감축 효과, 장기간 연용에 따른 작물 생육, 토양 화학성 등에 관한 추가적인 연구가 진행되어야 할 것으로 사료된다.

Lime-treated fertilizer (LTF) is manufactured using the lime stabilization method with food waste. LTF is effective in neutralizing acidic soil, improving nutrient and organic matter content in soil, and increasing crop productivity. However, excessive use of LTF in agricultural land can have undesirable effects, such as reduced crop growth and nutrient accumulation in soil. This study was evaluated the effect of different application ratios of LTF on the crop yield index (%), nutrient (N, P2O5, K2O) uptake index (%), and soil chemical properties. The following treatments were applied: untreated (UT), NPK (NPK), NPK+calcium hydroxide (CH), and NPK+1-, 2-, 4-, and 8-times of LTF (LTF1, 2, 4, and 8). The yield index for LTF1 was the highest among different LTF treatments. Moreover the yield index for spring and winter cabbage in LTF1 treatment was 10% and 21% higher, respectively, than that in NPK treatment. The yield and nutrient indices were decreased with the increase in LTF application ratio. The soil pH and EC tended to increase with the increase in LTF ratio, and were the highest at 8.2 and 2.1, respectively, after cultivation for LTF8 (P<0.05). With the increase in soil pH, the soil inorganic nitrogen (NH4-N, NH3-N) and available phosphate (Av. P2O5) levels were decreased (P<0.05). Our results suggest that LTF1 (643 kg 10a-1) is an appropriate ratio for improving soil chemical properties and increasing crop yield.

키워드

과제정보

본 연구는 농촌진흥청 공동연구사업인 농촌현안 해결 리빙랩 프로젝트 중 "음식물류폐기물을 포함한 가축분 퇴비의 품질 균일화 기술 개발 (PJ015293)"과제와 기관고유 사업인 기후변화 대응 및 스마트 기술현장실증연구(PJ017273)지원을 받아 연구되었음.

참고문헌

  1. Anetor, O. and A. Ezekiel. 2006. Response of soybean [Glycine max (L.) Merrill] to lime and phosphorus fertilizer treatments on an acidic alfisol of Nigeria. Pak J Nutr. 5 : 286-293. https://doi.org/10.3923/pjn.2006.286.293
  2. Bohn, L., L. McNeal, and A. O'Connor. 2001. Acid Soil. p. 260. Soil chemistry (3rd ed). John Wiley and Sons, Inc, New York, USA.
  3. Brady, N.C., and R. R. Weil. 1996. Chaper 3: Soil classification. p. 83-129. The nature and properties of soils. (11th ed). Person education. London, UK.
  4. Buri, M. M., T. Wakatsuki, and R. N. Issaka. 2005. Extent and management of low pH soils in Ghana. Soil Science and Plant Nutrition. 51 : 755-759. https://doi.org/10.1111/j.1747-0765.2005.tb00107.x
  5. Cho, Y., C. T. Driscoll, E. C. Johnson, and T. G. Siccama. 2010. Chemical changes in soil and soil solution after cacium silicate addition to a northern hardwood forest. Biogeochemistry. 100 : 3-20. https://doi.org/10.1007/s10533-009-9397-6
  6. Dobermann, A. 2007. Nutrient use efficiency: measurement and management. p.1-28. In: Krauss, A., Isherwood, K., Heffer, P. (Eds.), Fertilizer Best Management Practices: General Principles, Strategy for Their Adoption and Voluntary Initiatives Versus Regulations. International Fertilizer Industry Association, Paris, France.
  7. Dora, N. 2019. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 5794869.
  8. Driscoll, C. T., K. M. Driscoll, M. J. Mitchel, and D. J. Raynal. 2003. Effects of acidic deposition on forest and aquatic ecosystems in New York State. Environ. Pollut. 123(3) : 327-336. https://doi.org/10.1016/S0269-7491(03)00019-8
  9. Effa, E. B., D. F. Uwah, G. A. Iwo, E. E. Obok, and G. O. Ukoha. 2012. Yield performace of popcorn (Zea mays L. everta) under lime and nitrogen fertilization on an acid soil. J. Agric Sci. 4(10) : 12-19. https://doi.org/10.5539/jas.v4n10p12
  10. Ernst, J. W. and H. F. Massey. 1960. The effects of several factors on volatilization of ammonia formed from urea in soil. Soil Sci. Soc. Am. Proc. 24 : 87-90. https://doi.org/10.2136/sssaj1960.03615995002400020007x
  11. Fageria, N. K. and V. C. Baligar. 2008. Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. Adv. Agron. 99 : 345-399 https://doi.org/10.1016/S0065-2113(08)00407-0
  12. Hwang, K. S., Q. S. Ho, H. D. Kim, and J. H. Choi. 2002. Changes of electrical conductivity and nitrate nitrogen in soil applied with livestock manure. Korean J. Environ. Agric. 21(3) : 197-201. https://doi.org/10.5338/KJEA.2002.21.3.197
  13. Jeong, Y. J., S. H. Lee, H. S. Na, S. H. Kim, S. I. Kwon, and J. H. Shim. 2022. Evaluation of lettuce (Lactuca Sativa L.) growth and soil chemical properties using food waste compost with manure, black carbon and Plant-Growth-Promoting Bacteria (PGPB). J. Agric. Life Sci. 56(6) : 111-119. https://doi.org/10.14397/jals.2022.56.6.111
  14. Kim, S. H., J. H. Shim, S. J. Park, H. Y. Hwang, and C. H. Lee. 2020. Short-term effects of food waste compost on soil properties and Chinese cabbage growth in upland soil. Korean J. Soil Sci. Fert. 54(1) : 96-102. https://doi.org/10.7745/KJSSF.2021.54.1.096
  15. Kumar, R. and B. Shastri. 2017. Role of phosphate-solubilising microorganisms in sustainable agricultural development. p. 271-303. In: Singh J, and Seneviratne G (eds) Agro-Environmental Sustainability. Springer Cham. New York, USA.
  16. Lee, B. H., B. S. Park, S. N. Kim, and S. Y. Kim. 2017. Study of Lime treated fertilizer using food waste. KSWST Jour. Wat. Treat. 25(3) : 19-27.
  17. Lee, C. H., B. G. Ko, M. S. Kim, S. J. Park, S. G. Yun, and T. K. Oh. 2016. Effect of food waste compost on crop productivity and soil chemical properties under rice and pepper cultivation. Korean. J. Soil Sci. Fert. 49(6) : 682-688. https://doi.org/10.7745/KJSSF.2016.49.6.682
  18. Lee, S. G., J. H. Shim, S.I. Kwon, Y. H., Lee, and S. H. Kim. 2022. Effects of lime treated fertilizer on lettuce growth and soil chemical properties. Journal of Agriculture & Life Science. 56(6) : 187-191. https://doi.org/10.14397/jals.2022.56.6.187
  19. Li, Y., L. Huang, H. Zhang, M. Wang, and Z, Liang. 2017. Assessment of ammonia volatilization losses and nitrogen utilization during the rice growing season in alkaline salt affected soils. Sustainability. 9(1) : 132-139. https://doi.org/10.3390/su9010132
  20. Merry, R. H. 2009. Acidity and alkalinity of soils. p. 115-119. Sabljic. A (Eds.). Environmental and ecological chemistryVolum 2. EOLLS publications. Abu Dhabi, U.A.E.
  21. Mu, X. and Y. Chen. 2021. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol. Biochem. 158 : 76-82. https://doi.org/10.1016/j.plaphy.2020.11.019
  22. NIAST (National Institute of Agricultural Science and Technology). 2000. Method of soil and plant analysis. RDA, Korea.
  23. Nekesa, O., R. Okalebo, O. Othieno, N. Thuita, M. Kipsat, A. Bationo, N. Sanginga, J. Kimettu, and B. Vanlauwe. 2005. The potential of Minijingu phosphtae rock from Tanzania as a liming material: effect on maize and bean intercrop on acid soils of western Kenya. African Crop Science Conference Proceedings. 7 : 1121-1128.
  24. Park, J. M., I. B. Lee, Y. I. Kang, and K. S. Hwang. 2009. Effects of Mineral and Organic Fertilizations on Yield of Hot Pepper and Changes in Chemical Properties of Upland Soil. Kor. J. Hort. Sci. Technol. 27(1) : 24-29.
  25. Pavlovic, I., S. Mlinaric, D. Tarkowska, J. Oklestkova, O. Novak, H. Lepedus, V. V. Bok, S. R. Brkanac, M. Strnad, and B. S. Sondi. 2019. Early Brassica crops responses to salinity stress: a comparative analysis between chinese cabbage, white cabbage, and kale. Front. Plant Sci. 10 : 450.
  26. Plaxton, W. C. 2004. Plant response to stress: Biochemical adaptations to phosphate deficiency. p. 976-980. In. Goodman, R. M. (Eds.), Encylopedia of plant and crop science. Taylor and Francis. Oxfordshire. UK.
  27. Rawat, P., S. Das, D. Shankhdhar, and S. C. Shankhdhar. 2021. Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. J. Soil Sci. Plant Nutr. 21 : 49-68. https://doi.org/10.1007/s42729-020-00342-7
  28. RDA (Rural Development Administration). 2022a. Establishment of offical standard of fertilizers. Notification No. 2022-9 of RDA.
  29. RDA (Rural Development Administration). 2022b. Fertilizer recommendation for crops. Notification No. 11-1390802-001 610-01 of RDA.
  30. Shannon, M. C. 1997. Adaption of plants to salinity. Adv. Agron. 60 : 75-120. https://doi.org/10.1016/S0065-2113(08)60601-X
  31. Shin, S. M., K. W. Chang, J. J. Lee, K. P. Han, J. H. Hing, and H. K. Jeon. 2006. Changes of soil physico-chemical properties and plant growth according to the application of the food waste fertilizer. J. KORRA. 269-273.
  32. Simek, M., D. W. Hopkins, J. Kalcik, T. Picek, H. Santruckova, J. Stana, and K. Travnik. 1999. Biological and chemical properties of arable soils affected by long-term organic and inorganic fertilizer applications. Biol Fertil Soils 29 : 300-308. https://doi.org/10.1007/s003740050556
  33. Sustr, M., A. Soukup, and E. Tylova. 2019. Potassium in root growth and development. Plants. 8 : 435.
  34. Tolossa, A. 2019. A review on the potential effect of lime on soil properties and crop productivity improvements. Environ. Earth Sci. 9(2) : 17-23.
  35. Uribelarrea, M., S. J. Crafts-Brandner, and F. E. Below. 2009. Physiological N response of field-grown maize hybrids (Zea mays L.) with divergent yield potential and grain protien concentration. Plant Soil. 316 : 151.
  36. Yoo, J. H., Y. D. Lee, K. A. Hussein, and J. H. Joo. 2018. The effect of food waste compost on chinese cabbage (Brassica rapavar. glabra) and Tomato (Solanum lycopersicum L.) growth. Korean. J. Soil Sci. Fert. 51(4) : 596-607. https://doi.org/10.7745/KJSSF.2018.51.4.596
  37. Zhenghu, D. and X. Honglang. 2000. Effects of soil properties on ammonia volatilization. J. Soil Sci. Plant Nutr. 46(4) : 845-852. https://doi.org/10.1080/00380768.2000.10409150
  38. Zhu, J., M. Li, and M. Whelan. 2018. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Sci. Total Environ. 612 : 522-537. https://doi.org/10.1016/j.scitotenv.2017.08.095