DOI QR코드

DOI QR Code

Comparative Analysis of Growth, Yield, and Grain Quality of Hulled Barley Grown Under Different Meteorological Conditions in South Korea

기후분포가 다른 재배지에서 생장한 겉보리 생육, 수량 및 품질 비교

  • Hyun-Hwa Park (Dep. of Oriental Medicine Resources, Sunchon National Univ.) ;
  • Hyo-Jin Lee (Dep. of Oriental Medicine Resources, Sunchon National Univ.) ;
  • Ye-Guon Kim (Dep. of Oriental Medicine Resources, Sunchon National Univ.) ;
  • Dea-Wook Kim (Rural Development Administration, National Institute of Crop Science) ;
  • Yong-In Kuk (Dep. Of Oriental Medicine Resources, Sunchon National Univ.)
  • 박현화 (순천대학교 식물생산과학부 ) ;
  • 이효진 (순천대학교 자원식물개발학과) ;
  • 김예건 (순천대학교 자원식물개발학과) ;
  • 김대욱 (농촌진흥청 국립식량과학원) ;
  • 국용인 (순천대학교 바이오한약자원학과)
  • Received : 2023.04.14
  • Accepted : 2023.05.02
  • Published : 2023.06.01

Abstract

This study investigated the differences in barley growth at different growth stages (Dec, Feb, and Apr) and the yield at harvest in three groups (G1, G2, and G3) with different climates. Additionally, we measured meteorological differences between areas during the growing season to determine which factors were related to growth and yield differences. We evaluated the chemical composition of soil and the mineral content in leaves during the heading stages. We also recorded the main constituents, amino acids, and mineral compositions of barley seeds grown in different areas. Tiller number/m2 in G1 areas was higher than in G2 and G3 when measured before and after overwintering. However, tiller number/m2 and dry aboveground plant parts/m2 in G2 and G3 areas were higher than in G1. Regrowth, panicle formation, and heading days in G2 areas occurred slightly later than in G1 and G3. However, there was no difference in chlorophyll content (SPAD value) between groups. The yield in G1 areas was 9~15% less than in G1 and G3. The decrease in yield in G2 areas could be due to lower panicle number, spikelet number, and ripening rate. In addition, the decrease in yield in G2 areas is likely because maximum, minimum, and average daily temperatures during the growing season were lower than those in G1 and G3. However, mineral nutrients in the soil were higher in the G2 area than in G1 and G3. The overall mineral content in plants tended to be higher in G1 areas than in G2 and G3. Mineral content such as Cu, K, Mg, and P in G3 areas and crude protein and most amino acids in G2 areas tended to be relatively low compared to other areas. Thus, the G1 area may be suitable for barley cultivation without adverse impacts on barley yield, main constituents, amino acids, and mineral contents compared to the main producing areas in G3.

본 연구는 기후분포가 다른 3개 그룹 지역(G1, G2, G3)에 겉보리를 파종하고, 월동 전(12월), 월동 후(2월) 및 출수기(4월)에 생육과 수확기(6월)에 수량 차이를 조사하였고, 이들 그룹 지역간 생육과 수량차이와 작물생육기 기상요인과 출수기에 토양화학성과 잎 무기성분과 관련성을 조사하였다. 또한 수확기에는 그룹 지역간에 수확한 겉보리 종자의 일반성분, 무기물 및 아미노산 함량을 조사하였다. 월동 전, 후 분얼수는 G1지역이 G2와 G3지역에 비해 높았다. 그러나 출수기의 분얼수와 지상부 건물중은 G2와 G3 지역이 G1지역에 비해 높았다. 재생기, 유수형성기 및 출수일의 경우 G2 지역은 G1과 G3지역에 비해 다소 늦었다. 그러나 엽록소 함량(SPAD값)은 그룹 간에 차이가 없었다. 수량의 경우 G2지역이 G1과 G3지역에 비해 9~15% 감소하였다. G2지역의 수량 감소는 수수, 영화수 및 등숙율 감소에 기인되는 것으로 판단된다. 또한 G2지역에서 수량이 감소했던 것은 G2지역이 작물 생육기에 최고, 최저 및 일 평균기온이 G1과 G3지역에 비해 낮았기 때문인 것으로 판단된다. 그러나 토양 내 무기성분은 G2지역에서 G1과 G3 지역에 비해 높았다. 식물체의 무기성분 함량은 G1지역에서 G2와 G3 지역에 비해 높은 경향이었다. Cu, K, Mg 및 P와 같은 무기물 함량은 G3 지역에서 그리고 조단백질과 대부분 아미노산은 G2 지역에서 다른 지역에 비해 상대적으로 낮은 경향을 보였다. 따라서 재배한계지 G1지역은 주산지 G3 지역에 비해 겉보리 수량과 일반성분, 아미노산 및 무기물 함량 등에 부정적인 영향없이 안정적으로 재배가 가능한 것으로 판단된다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 공동연구사업(ATIS 과제번호 : PJ014812)의 지원으로 수행된 결과입니다. 연구과제의 실험진행을 도와 주신 김희권, 정병준, 황인택, 김영옥, 이영선, 남지영, 이미영, 이옥기 연구원 분들께 감사드립니다.

References

  1. Ahn, S. H., D. W. Kim, H. S. Lee, J. H. Jeong, H. Y. Jeong, W. H. Hwang, J. S. Baek, K. J. Choi, I. B. Choi, H. K. Park, J. T. Youn, and G. J. Kim. 2017. Changes in physicochemical properties in wheat grains as influenced by average temperature rise during ripening stage. Journal of Korean Society of International Agriculture. 29(1) : 50-55. https://doi.org/10.12719/KSIA.2017.29.1.50
  2. Alberdi, M. and L. J. Corcuera. 1991. Cold acclimation in plants. Phytochemistry 30 : 3177-3184. https://doi.org/10.1016/0031-9422(91)83172-H
  3. Araya, A., G. Hoogenboom, E. Luedeling, K. M. Hadgu, I. Kisekka, and L. G. Martorano, 2015. Assessment of maize growth and yield using crop models under present and future climate in southwestern Ethiopia. Agricultural and Forest Meteorology. 214 : 252-265. https://doi.org/10.1016/j.agrformet.2015.08.259
  4. Araya, A., I. Kisekka, X. Lin, P. V. Vara Prasad, P. H. Gowda, C. Rice, and A. Andales. 2017. Evaluating the impact of future climate change on irrigated corn production in Kansas. J. Climate Risk Management. 17 : 139-154. https://doi.org/10.1016/j.crm.2017.08.001
  5. Araya, A., P. V. V. Prasad, Z. Zambreski, P. H. Gowda, I. A. Ciampitti, and A. Girma. 2020. Spatial analysis of the impact of climate factors and adaptation strategies on productivity of wheat in Ethiopia. Science of The Total Environment. 731 : 139094.
  6. Asseng, S., I. Foster, and N.C. Turner. 2011. The impact of temperature variability on wheat yields. Glob. Global Change Biology. 17 : 997-1012. https://doi.org/10.1111/j.1365-2486.2010.02262.x
  7. Brisson, N., P. Gate, D. Gouache, G. Charmet, F.-X. Oury, and F. Huard. 2010. Why are wheat yields stagnating in Europe? A comprehen sive data analysis for France. Field Crops Research. 119 : 201-212. https://doi.org/10.1016/j.fcr.2010.07.012
  8. Carr, S. J., G. S. P. Ritchie, and W. M. Porter. 1991. A soil test for aluminium toxicity in acidic subsoils of yellow earths in Western Australia. Australian Journal of Agricultural Research. 42 : 875-892. https://doi.org/10.1071/AR9910875
  9. Cha, J. H. and K. S. Kim. 1989. Agriculture, Forestry and Meteorology; Sunjin Culture: Seoul, Korea. pp. 201-307.
  10. Choi, D. H. and S. H. Yun. 1989. Agroclimatic zone and characters of the area subject to climatic disaster in Korea. Korean Journal of Crop Science. 34 (Suppl. S2) : 13-33.
  11. Clausen, S. K., G. Frenck, L. G. Linden, T. N. Mikkelsen, C. Lunde, and R. B. Jorgensen. 2011. Effects of single and multi-factor treatments with elevated temperature, CO2 and ozone on oilseed rape and barley. Journal of Agronomy Crop Science. 197 : 4421-453.
  12. Collins, M., R. Knutti, J. Arblaster, J. L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W. J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A. J. Weaver, and M. Wehner. 2013. Long-term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK. 12 : 1029-1136
  13. Dijkman, T. J., M. Birkved, H. Saxe, H. Wenzel, and M. Z. Hauschild. 2017. Environmental impacts of barley cultivation under current and future climatic conditions. Journal of Cleaner Production. 140 : 644-653. https://doi.org/10.1016/j.jclepro.2016.05.154
  14. Dawson, I. K., J. Russell, W. Powell, B. Steffenson, W. T. B. Thomas, and R. Waugh. 2015. Barley: A translational model for adaptation to climate change. New Phytologist. 206 : 913-931. https://doi.org/10.1111/nph.13266
  15. Farooqi, A. B., A. H. Khan, and H. Mir. 2005. Climate change perspective in Pakistan. Pakistan Journal of Meteorology. 2 : 11-21.
  16. Fowler, D. B. and R. J. Carles. 1979. Growth, development, and cold tolerance of fall acclimated cereal grains. Crop Science. 19 : 915-922. https://doi.org/10.2135/cropsci1979.0011183X001900060040x
  17. Gammans, M., P. Merel, and A. Ortiz-Bobea. 2017. Negative impacts of climate change on cereal yields: Statistical evidence from France. Environmental Research Letters. 12 : 54007.
  18. Ha, Y. W. 2000. Barley, Ruderal Development Administration. Geomogmunhasa. pp. 81-82.
  19. IPCC. 2013. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, MA, UK.
  20. Kim, D. J., J. H. Kin, J. H. Roh, and J. I. Yun. 2012. Geographical Migration of Winter Barley in the Korean Peninsula under the RCP8.5 Projected Climate Condition. Korean Journal of Agricultural and Forest Meteorology. 14 : 161-169. https://doi.org/10.5532/KJAFM.2012.14.4.161
  21. Kim, Y. G., H. H. Park, H. J. Lee, H. K. Kim, and Y. I. Kuk. 2022. Growth, yield and grain quality of barley (Hordeum vulgare L.) grown across South Korean farmland with different temperature distributions. Agronomy. 12 : 2731.
  22. Ko, J., C. T. Ng, S. Jeong, J. H. Kim, B. Lee, and H. Y. Kim. 2019. Impacts of regional climate change on barley yield and its geographical variation in South Korea. International Agrophysics. 33 : 81-96. https://doi.org/10.31545/intagr/104398
  23. Kononova, M. M. 1996. Soil Organic Matter: Its Nature, Its Role in Soil Formation and in Soil Fertility; Pergamon Press: Oxford, UK.
  24. Kumar, R., V. Singh, S. K. Pawar, P. K. Singh, A. Kaur, and D. Sharma. 2017. Abiotic Stress and Wheat Grain Quality: A Comprehensive Review. In Wheat Production in Changing Environments; Springer: New York, NY, USA, pp. 63-87.
  25. Lee, S. H., I. H. Heo, K. M. Lee, S. Y. Kim, Y. S. Lee, and W. T. Kwon. 2008. Impacts of climate change on phenology and growth of crops: In the case of Naju. Journal of the Korean Geographical Society. 43 : 20-35.
  26. Lobell, D. B., W. Schlenker, and J. Costa-Roberts. 2011. Climate trends and global crop production since 1980. Science. 333(6042) : 616-620. https://doi.org/10.1126/science.1204531
  27. Mora, C., A. G. Fraizier, R. J. Longman, R. S. Dacks, M. M. Walton, E. J. Tong, J. J. Sanchez, L. R. Kaiser, Y. O. Srender, J. M. Anderson, C. M. Amberosino, I. F. Silva, L. M. Giuseffi, and T. W. Giambelluca. 2013. The projected timing of climate departure from recent variability. Nature. 502 : 183-188. https://doi.org/10.1038/nature12540
  28. Newton, A. C., A. J. Flavell, T. S. George, P. Leat, B. Mullholland, L. Ramsay, C. Revoredo-Giha, J. Russell, B. J. Steffenson, J. S. Swanston, W. T. B. Thomas, R. Waugh, P. J. White, and I. J. Bingham. 2011. Crops that feed the world 4. Barley: A resilient crop? Strengths and weaknesses in the context of food security. Food Security. 3 : 141-178. https://doi.org/10.1007/s12571-011-0126-3
  29. Ohara, I. and A. Shujiro. 1979. Comparison of protein precipitants for the determination of free amino acids in plasma. Agricultural and Biological Chemistry. 43 : 1473-1478. https://doi.org/10.1080/00021369.1979.10863637
  30. Park, H. H., H. J. Lee, S. W. Roh, H. Hwangbo, and Y. I. Kuk, 2022. Evaluation of cultivation limit area for different types of barley owing to climate change based on cultivation status and area of certified seed request. The Korean Journal of Crop Science. 67 : 95-110.
  31. Passarella, V. S., R. Savin, and G. A. Slafer. 2008. Are temperature effects on weight and quality of barley grains modified by resource availability? Australian Journal of Plant Physiology. 59 : 510-516. https://doi.org/10.1071/AR06325
  32. Prasad, P. V. V., M. Djanaguiraman, R. Perumal, and I. A. Ciampitti. 2015. Impact of high temperature stress on floret fertility and individual grain weight of grain sorghum: Sensitive stages and thresholds for temperature and duration. Frontiers in Plant Science. 6 : 820.
  33. Statistical Analysis System (SAS). 2000. SAS/STAT User's Guide, 7th ed.; Electronic Version; Statistical Analysis System Institute: Cary, NC, USA.
  34. Savin, R. and M. E. Nicolas. 1996. Effects of short periods of drought and high temperature on grain growth and starch accumulation of two malting barley cultivars. Australian Journal of Plant Physiology. 23 : 201-210. https://doi.org/10.1071/PP9960201
  35. Schierhorn, F., M. Hofmann, I. Adrian, H. Bobojonov, and D. Muller. 2020. Spatially varying impacts of climate change on wheat and barley yields in Kazakhstan. Journal of Arid Environments. 178 : 104-164. https://doi.org/10.1016/j.jaridenv.2020.104164
  36. UNFCCC. 2010. United Nations Framework Collection on Climate Change. In Copenhagen Accord; UNFCCC: Copenhagen, Denmark.
  37. Wang, Y. and M. Frei. 2011. Stressed food-The impact of abiotic environmental stresses on crop quality. Agriculture, Ecosystems & Environment. 141: 271-286. https://doi.org/10.1016/j.agee.2011.03.017
  38. Wheeler, T. R., G. R. Batts, R. H. Ellis, P. Hadley, and J. I. L. Morison. 1996. Growth and yield of winter wheat (Triticum aestivum) crops in response to CO2 and temperature. The Journal of Agricultural Science. 127 : 37-48. https://doi.org/10.1017/S0021859600077352
  39. Young, K. 1998. Barley: Soil; Climatic Requirements. In Soil Guide: A Handbook for Understanding and Managing Agricultural Soils; Bulletin 4343; Moore, G., Ed.; Agriculture Western Australia: South Perth, Australia.
  40. Yun, S. H., J. N. Im, J. T. Lee, K. M. Shim, and K. H. Hwang. 2001. Climate change and coping with vulnerability of agricultural productivity. Korean Journal of Agricultural and Forest Meteorology 3 : 220-237.