DOI QR코드

DOI QR Code

촉매유효도 상관식에 기반한 마이크로 채널형 수증기/메탄 개질기의 간략화된 1차원 해석모델의 개발

Development of Simplified One-dimensional Model for Microchannel Steam/Methane Reformers based on Catalyst Effectiveness Factor Correlations

  • Yun Seok Oh (Graduate School of Mechanical Engineering, Seoul National University) ;
  • Dae-Hoon Lee (Graduate School of Mechanical Engineering, Seoul National University) ;
  • Jin Hyun Nam (School of Mechanical Engineering, Daegu University)
  • 투고 : 2023.01.17
  • 심사 : 2023.04.20
  • 발행 : 2023.06.25

초록

In this study, an efficient one-dimensional model was developed for predicting microchannel steam/methane reformers with thin washcoat catalyst layers with a focus on low-pressure reforming conditions suitable for distributed hydrogen production systems for fuel cell applications. The governing equations for steam/methane mixture gas flowing through the microchannel reformer were derived considering the species conservation with reforming reactions and energy conservation with external convective heat supply. The reaction rates for the developed model were simply determined through the catalyst effectiveness factor correlations instead of performing complicated calculations for the steam/methane reforming process occurring inside the washcoat catalyst layers. The accuracy of the developed was verified by comparing the results obtained herein with those obtained by the detailed computational fluid dynamics calculation for the same microchannel reformer.

키워드

과제정보

본 논문은 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(Grant No. NRF-2019R1F1A1041995)의 연구 결과이며 이에 감사드립니다.

참고문헌

  1. Ha, S.J., Choi, J.H., and Oh, S.J., 2022, "Technology competitiveness analysis of new & renewable energy in major countries", New. Renew. Energy, 18(3), 72-84. https://doi.org/10.7849/ksnre.2022.0022
  2. Kim, H.N., and Kim, J.K., 2021, "Development of methane decomposition reactor for hydrogen production using solar thermal energy", New. Renew. Energy, 17(2), 40-49. https://doi.org/10.7849/ksnre.2021.0006
  3. Ryi, S.K., Han, J.Y., Kim, C.H., Lim, H.K., and Jung, H.Y., 2017, "Technical trends of hydrogen production", Clean Technol., 23(2), 121-132.
  4. Lee, H., Kim, W., Lee, K., and Yoon, W. L., 2018, "Kinetic model of steam-methane reforming reactions over Ni-based catalyst", Kor. Chem. Eng. Res., 56(6), 914-920.
  5. Zhang, H., Sun, Z., and Hu, Y. H., 2021, "Steam reforming of methane: current states of catalyst design and process upgrading", Renew. Sustain. Energy Rev., 149, 111330.
  6. O'Hayre, R. P., Cha, S. W., Colella, W., and Prinz, F. B., 2016, "Fuel Cell Fundamentals", John Wiley & Sons, New York.
  7. Han, J. R., Park, S. J., Kim, H.T., Lee, S.J., and Lee, J. M., 2022, "Centralized and distributed hydrogen production using steam reforming: challenges and perspectives", Sustain. Energy Fuels, 6(8), 1923-1939. https://doi.org/10.1039/D1SE01870A
  8. Yun, S.G., Cho, H.T., Kim, M.J., Lee, J.W., and Kim, J.H., 2022, "Exergy analysis and heat exchanger network synthesis for improvement of a hydrogen production process: practical application to on-site hydrogen refueling stations", Trans. Kor. Hydrog. New Energy Soc., 33(5), 515-524. https://doi.org/10.7316/KHNES.2022.33.5.515
  9. Tran, A., Aguirre, A., Crose, M., Durand, H., and Christofides, P.D., 2017, "Temperature balancing in steam methane reforming furnace via an integrated CFD/databased optimization approach", Comput. Chem. Eng., 104(2), 185-200. https://doi.org/10.1016/j.compchemeng.2017.04.013
  10. Baek, S. M., Kang, J. H., Lee, K. J., and Nam, J. H., 2014, "A numerical study of the effectiveness factors of nickel catalyst pellets used in steam methane reforming for residential fuel cell applications", Int. J. Hydrog. Energy, 39(17), 9180-9192. https://doi.org/10.1016/j.ijhydene.2014.04.067
  11. Nam, J. H., 2015, "Effectiveness factor correlations for spherical nickel catalyst pellets used in small-scale steam methane reformers", Int. J. Hydrog. Energy, 40(16), 5644-5652. https://doi.org/10.1016/j.ijhydene.2015.02.119
  12. Jeong, A.R., Shin, D.W., Baek, S.M., and Nam, J.H., 2018, "Effectiveness factor correlations from simulations of washcoat nickel catalyst layers for small-scale steam methane reforming applications", Int. J. Hydrog. Energy, 43(32), 15398-15411. https://doi.org/10.1016/j.ijhydene.2018.06.059
  13. Ko, S.K., and Lee, S.Y., 2023, "A study on the optimization of hydrogen production and purification system for PEMFC", Trans. Kor. Hydrog. New Energy Soc., 34(1), 1-7. https://doi.org/10.7316/KHNES.2023.34.1.1
  14. Tonkovich, A. Y., Perry, S., Wang, Y., Qiu, D., LaPlante, T., and Rogers, W. A., 2004, "Microchannel process technology for compact methane steam reforming", Chem. Eng. Sci., 59(22-23), 4819-4824. https://doi.org/10.1016/j.ces.2004.07.098
  15. Murphy, D. M., Manerbino, A., Parker, M., Blasi, J., Kee, R. J., and Sullivan, N. P., 2013, "Methane steam reforming in a novel ceramic microchannel reactor", Int. J. Hydrog. Energy, 38(21), 8741-8750. https://doi.org/10.1016/j.ijhydene.2013.05.014
  16. Xu, J., and Froment, G. F., 1989, "Methane steam reforming, methanation and water gas shift: I. intrinsic kinetics", AIChE J., 35(1), 88-96. https://doi.org/10.1002/aic.690350109
  17. Fuller, E. N., Schettler, P. D., and Giddings, J. C., 1966, "New method for prediction of binary gas-phase diffusion coefficients", Ind. Eng. Chem., 58(5), 18-27. https://doi.org/10.1021/ie50677a007
  18. Zanfir, M., and Gavriilidis, A., 2003, "Catalytic combustion assisted methane steam reforming in a catalytic plate reactor", Chem. Eng. Sci., 58(17), 3947-3960. https://doi.org/10.1016/S0009-2509(03)00279-3
  19. Klein, S. A., 2018, "Engineering Equation Solver (EES) Manual", F-Chart Software LLC, Madison.
  20. Choi, S.K., Choi, Y.S., Jeong, Y.W., Han S.Y., and Nguyen Q. V., 2022, "Analysis on the pyrolysis characteristics of waste plastics using plug flow reactor model", New. Renew. Energy, 18(4), 12-21. https://doi.org/10.7849/ksnre.2022.0037
  21. ANSYS Inc, 2022, "ANSYS Fluent User's Guide", Release 2022R1, ANSYS Inc, Canonsburg.
  22. Oh, Y. S., Jeong A.R., and Nam, J. H., 2022, "Efficient computational fluid dynamics model for microchanneltype steam/ methane reformers with nickel washcoat catalyst layers based on effectiveness factor correlations", Trans. Kor. Hydrog. New Energy Soc., 33(6), 749-760.  https://doi.org/10.7316/KHNES.2022.33.6.749