DOI QR코드

DOI QR Code

Membrane Technology for Artificial Lungs and Blood Oxygenators

혈액산화용 인공폐 분리막 기술 연구동향

  • Donghyun Park (Energy and Chemical Engineering Department, Incheon National University) ;
  • Bao Tran Duy Nguyen (Energy and Chemical Engineering Department, Incheon National University) ;
  • Bich Phuong Nguyen Thi (Energy and Chemical Engineering Department, Incheon National University) ;
  • Jeong F. Kim (Energy and Chemical Engineering Department, Incheon National University)
  • 박동현 (인천대학교 에너지화학공학과) ;
  • ;
  • ;
  • 김정 (인천대학교 에너지화학공학과)
  • Received : 2023.04.13
  • Accepted : 2023.04.25
  • Published : 2023.04.30

Abstract

The technical importance of membrane-based artificial lung technology has been re-emphasized after the recent breakout of COVID-19 to treat acute lung-failure patients. The world population, particularly in Korea, is aging at an unprecedented rate, which can increase the demand for better artificial organs (AO) in the near future. Membrane technology plays a key role in artificial organ markets. Among them, membrane-based artificial lung (AL) technology has improved significantly in the past 50 years, but the survival rate of lung-failure patients is still very low. Most AL works focus on the clinical application of the AL device, not on the development of the AL membrane itself. This review summarizes the challenges and recent progress of membrane-based AL technology.

최근 COVID-19로 인해 증가한 급성 폐부전 중증환자 치료를 위한 인공폐 기술의 필요성이 부각되었다. 또한, 빠르게 진행되고 있는 인구고령화는 인공장기(artificial organ, AO) 기술에 대한 높은 수요를 불가피하게 만들고 있다. 분리막은폐, 신장, 간 및 췌장을 포함한 많은 AO 기기의 핵심 부품이다. 특히 인공폐(artificial lung, AL) 기술은 지난 50년간 빠르게 발전해왔지만, 장기부전 환자의 생존율은 50% 내외로 여전히 낮은 편이다. 현재 대부분의 AL 관련문헌은 임상결과에 집중되어 있으며, AL 분리막의 개발연구는 매우 부족한 편이다. 이에 대한 원인 중 하나는 AL 기술이 생명공학을 포함하여 고분자 화학 및 분리공정 기술을 아우르는 융합적 기술개발을 요구하기 때문인 것으로 판단된다. 본 총설에서는 헬스케어산업에서 AL 분리막 기술의 역할과 기술개발이 필요한 난제들을 정리하였다. 특히, 분리막 소재의 혈액적합성, 분리성능, 모듈 디자인 및 공정 구성 측면에서 다양한 연구개발이 필요하다는 부분을 강조하고자 한다.

Keywords

Acknowledgement

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number : HI22C1234).

References

  1. Researchandmarkets, "Extracorporeal membrane oxygenation machine market by modality, application and region - Analysis & forecasts to 2021", (2017). 
  2. A. A. Shah, H. J. Heo, S. Park, E. Yi, Y. Cho, S.-E. Nam, Y.-I. Park, H. Kim, E.-H. Sohn, and H. Park, "Origin of fluoropolymer affinity toward water and its impact on membrane performance", ACS Appl. Polym. Mater., 2, 5249- 5258, (2020).  https://doi.org/10.1021/acsapm.0c00975
  3. S. Kim, B. T. D. Nguyen, H. Ko, M. Kim, K. Kim, S. Nam, and J. F. Kim, "Accurate evaluation of hydrogen crossover in water electrolysis systems for wetted membranes", Int. J. Hydrogen Energy, 46, 15135-15144 (2021).  https://doi.org/10.1016/j.ijhydene.2021.02.040
  4. M. G. Shin, W. Choi, J. Huh, W. D. Mulhearn, J. S. Hwang, C. M. Stafford, J. F. Kim, and J.-H. Lee, "Solvent transport model for polyamide nanofilm membranes based on accurate Hansen solubility parameters", J. Membr. Sci., 674, 121505 (2023). 
  5. H. Y. Nguyen Thi, S. Kim, B. T. Duy Nguyen, D. Lim, S. Kumar, H. Lee, G. Szekely, and J. F. Kim, "Closing the sustainable life cycle loop of membrane technology via a cellulose biomass platform", ACS Sustain. Chem. Eng., 10, 2532-2544 (2022).  https://doi.org/10.1021/acssuschemeng.1c08554
  6. M. Ochs, J. R. Nyengaard, A. Jung, L. Knudsen, M. Voigt, T. Wahlers, J. Richter, and H. J. G. Gundersen, "The number of alveoli in the human lung", Am. J. Respir Crit. Care Med., 169, 120- 124 (2004).  https://doi.org/10.1164/rccm.200308-1107OC
  7. R. Johnson and C. Hsia, "Human respiration : Anatomy and physiology, mathematical modeling, numerical simulation and applications", pp. 1-29, WIT Press, Southampton, UK (2006). 
  8. M. C. Annesini, L. Marrelli, V. Piemonte, and L. Turchetti, "Artificial organ engineering", pp. 117-161, Springer, London, UK (2017). 
  9. S. Goutelle, M. Maurin, F. Rougier, X. Barbaut, L. Bourguignon, M. Ducher, and P. Maire, "The Hill equation: a review of its capabilities in pharmacological modelling", Fundam. Clin. Pharmacol., 22, 633- 648 (2008).  https://doi.org/10.1111/j.1472-8206.2008.00633.x
  10. A. V. Hill, "The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves", J. Physiol., 40, 4-7 (1910). 
  11. T. Des Jardins, "Cardiopulmonary anatomy & physiology: Essentials of respiratory care", pp. 3-76, Delmar, New York, USA (2012). 
  12. K. Tsakiridis, A. Mpakas, G. Kesisis, S. Arikas, M. Argyriou, S. Siminelakis, P. Zarogoulidis, N. Katsikogiannis, I. Kougioumtzi, and T. Tsiouda, "Lung inflammatory response syndrome after cardiac-operations and treatment of lornoxicam", J. Thorac. Dis., 6, S78 (2014). 
  13. S. Dimitrios, "Biomedical membranes and (bio) artificial organs 2", pp. 83-104, World Scientific, Singapore (2017). 
  14. K. Nagase, F. Kohori, and K. Sakai, "Oxygen transfer performance of a membrane oxygenator composed of crossed and parallel hollow fibers", Biochem. Eng. J., 24, 105-113 (2005).  https://doi.org/10.1016/j.bej.2005.02.003
  15. T. K. Poddar, S. Majumdar, and K. K. Sirkar, "Removal of VOCs from air by membrane-based absorption and stripping", J. Membr. Sci., 120, 221-237, (1996).  https://doi.org/10.1016/0376-7388(96)00145-7
  16. A. Mansourizadeh, I. Rezaei, W. J. Lau, M. Q. Seah, and A. F. Ismail, "A review on recent progress in environmental applications of membrane contactor technology", J. Environ. Chem. Eng., 10, 107631 (2022). 
  17. K. W. Low, R. Van Loon, S. A. Rolland, and J. Sienz, "Formulation of generalized mass transfer correlations for blood oxygenator design", J. Biomech. Eng., 139, 031007 (2017). 
  18. S. Wickramasinghe, A. Goerke, J. Garcia, and B. Han, "Designing blood oxygenators", Ann. N. Y. Acad. Sci., 984, 502-514 (2003).  https://doi.org/10.1111/j.1749-6632.2003.tb06023.x
  19. N. Matsuda and K. Sakai, "Blood flow and oxygen transfer rate of an outside blood flow membrane oxygenator", J. Membr. Sci., 170, 153-158 (2000).  https://doi.org/10.1016/S0376-7388(00)00331-8
  20. J. R. Zierenberg, H. Fujioka, K. E. Cook, and J. B. Grotberg, "Pulsatile flow and oxygen transport past cylindrical fiber arrays for an artificial lung: Computational and experimental studies", J. Biomech. Eng., 130, 031019 (2008). 
  21. B. P. N. Thi, B. T. D. Nguyen, I.-S. Jeong, and J. F. Kim, "Hemocompatibility challenge of membrane oxygenator for artificial lung technology", Acta Biomater., 152, 19-46 (2022).  https://doi.org/10.1016/j.actbio.2022.09.003
  22. W. J. Federspiel and K. A. Henchir, "Lung, artificial: basic principles and current applications", Encyclopedia of Biomaterials and Biomedical Engineering, pp. 910-921, CRC Press, Boca Raton, (2008). 
  23. J. A. Awad, R. Cloutier, L. Fournier, D. Major, L. Martin, M. Masson, and R. Guidoin, "Pumpless respiratory assistance using a membrane oxygenator as an artificial placenta: a preliminary study in newborn and preterm lambs", J. Invest. Surg., 8, 21-30 (1995).  https://doi.org/10.3109/08941939509015388
  24. F. Wieses, D. Paul, W. Possart, G. Malsch, and E. Bossin, "Grenzflauchenenergie gequollener Polymermembranen", Acta Polym., 41, 95-98 (1990).  https://doi.org/10.1002/actp.1990.010410206
  25. F. Wiese, "Membranes for artificial lungs", Membranes for the Life Sciences, 1, pp. 49-68, New York, USA (2007).  https://doi.org/10.1002/9783527631360.ch2
  26. N. G. LaFayette, R. E. Schewe, J. P. Montoya, and K. E. Cook, "Performance of a MedArray silicone hollow fiber oxygenator", ASAIO J., 55, 382- 387 (2009).  https://doi.org/10.1097/MAT.0b013e3181a44263
  27. E. Khoshbin, N. Roberts, C. Harvey, D. Machin, H. Killer, G. J. Peek, A. W. Sosnowski, and R. K. Firmin, "Poly-methyl pentene oxygenators have improved gas exchange capability and reduced transfusion requirements in adult extracorporeal membrane oxygenation", ASAIO J., 51, 281-287 (2005).  https://doi.org/10.1097/01.MAT.0000159741.33681.F1
  28. J. M. Toomasian, R. J. Schreiner, D. E. Meyer, M. E. Schmidt, S. E. Hagan, G. W. Griffith, R. H. Bartlett, and K. E. Cook, "A polymethylpentene fiber gas exchanger for long-term extracorporeal life support", ASAIO J., 51, 390-397 (2005).  https://doi.org/10.1097/01.mat.0000169111.66328.a8
  29. J. F. Kim, J. H. Kim, Y. M. Lee, and E. Drioli, "Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review", AIChE J., 62, 461-490 (2016).  https://doi.org/10.1002/aic.15076
  30. A. Park, Y. Song, E. Yi, B. T. Duy Nguyen, D. Han, E. Sohn, Y. Park, J. Jung, Y. M. Lee, and Y. H. Cho, "Blood Oxygenation Using FluoropolymerBased Artificial Lung Membranes", ACS Biomater. Sci. Eng., 6, 6424-6434 (2020).  https://doi.org/10.1021/acsbiomaterials.0c01251
  31. B. T. Duy Nguyen, H. Y. Nguyen Thi, B. P. Nguyen Thi, D.-K. Kang, and J. F. Kim, "The roles of membrane technology in artificial organs: current challenges and perspectives", Membranes, 11, 239 (2021).