DOI QR코드

DOI QR Code

마찰해석모델에 따른 PVDF/MgO 마찰재 적용 면진 장치가 설치된 교량의 성능 비교 분석

Performance Comparison Analysis of a Bridge Installed with Anti-seismic Devices using PVDF/MgO Friction Material According to Friction Analysis Models

  • 박혜리 (연세대학교 건설환경공학과 ) ;
  • 김성조 (연세대학교 건설환경공학과 ) ;
  • 한동석 (연세대학교 건설환경공학과 )
  • Hye-Ri Park (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Sung-Jo Kim (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Tong-Seok Han (Department of Civil and Environmental Engineering, Yonsei University)
  • 투고 : 2023.03.03
  • 심사 : 2023.03.31
  • 발행 : 2023.04.30

초록

본 연구에서는 마찰모델에 따라 다른 마찰진자시스템(FPS)이 적용된 교량의 성능을 비교·분석하기 위해 구조해석을 수행하였다. 마찰해석모델 별 성능을 분석하기 위해 PVDF/MgO 마찰재의 마찰계수를 활용하여 쿨롱 마찰모델과 속도 의존 마찰모델을 구축했다. 쿨롱 마찰모델은 마찰속도와 관계없이 단일 마찰계수를 사용하며, 속도 의존 마찰모델은 마찰속도에 따른 마찰계수의 변화를 반영하는 마찰모델이다. 지진해석으로 비선형 시간 이력 해석과 지진 취약도 해석을 수행하여 구조물의 응답을 확인하였다. 마찰모델에 따른 바닥판과 교각의 지진 응답을 활용해 면진된 교량의 성능을 분석하였으며, 면진된 교량의 성능을 효과적으로 평가할 수 있는 마찰모델을 분석했다.

In this study, structural analyses were conducted to analyze the performance of a bridge to which friction pendulum systems (FPSs) were applied using different friction models. A Coulomb friction model and a rate dependent friction model were constructed using the friction coefficient of a PVDF/MgO friction material to analyze the effect of different friction analysis models. The Coulomb friction model uses a single friction coefficient regardless of friction velocity, while the rate dependent friction model can reflect the change in the friction coefficient with friction velocity. Nonlinear time history and seismic fragility analyses were conducted to confirm responses of the bridge. The seismic responses of a deck and a column were used to evaluate the performance of the base isolated bridge, and a friction model that can effectively evaluate the performance of isolated bridges was analyzed.

키워드

과제정보

이 논문은 행정안정부장관의 방재안전분야 전문인력 양성사업과 산업부의 제원으로 한국산업기술진흥원(범부처 연계형 기술사업화 이어달리기)의 지원을 받아 수행된 결과임(P0021322).

참고문헌

  1. Aviram, A., Mackie, K.R., Stojadinovic, B. (2008) Guidelines for Nonlinear Analysis of Bridge Structures in California, Report PEER 2008/3, Berkeley, CA: Pacific Earthquake Engineering Research Center, University of California.
  2. Biswas, S.K., Vijayan, K. (1992) Friction and Wear of PTFE - a Review, Wear, 158(1-2), pp.193~211. https://doi.org/10.1016/0043-1648(92)90039-B
  3. Buckle, I.G., Mayes, R.L. (1990) Seismic Isolation: History, Application, and Performance - a World View, Earthq. Spectra, 6(2), pp.161~201. https://doi.org/10.1193/1.1585564
  4. Caltrans, S.D.C. (2004) Caltrans Seismic Design Criteria Version 1.3, California Department of Transportation, Sacramento.
  5. Constantinou, M., Mokha, A., Reinhorn, A. (1990) Teflon Bearings in Base Isolation II: Modeling, J. Struct. Eng., 116(2), pp. 455~474. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:2(455)
  6. Federal Emergency Management Agency (FEMA) (2020) HAZUS Earthquake Model Technical Manual: Hazus 4.2 SP3.
  7. Fenz, D.M., Constantinou, M.C. (2008) Mechanical Behavior of Multi-Spherical Sliding Bearings (No.7), Multidisciplinary Center for Earthquake Engineering Research. p.186.
  8. Hwang, H.H.M., Jaw, J.W. (1990) Probabilistic Damage Analysis of Structures, J. Struct. Eng., 27(3), pp.349~359. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:7(1992)
  9. Kim, S.J., Kim, J.S., Han, T.S. (2021) Performance Analysis of Friction Pendulum System using PVDF/MgO Friction Material, J. Comput. Struct. Eng. Inst. Korea, 34(4), pp.213~219. https://doi.org/10.7734/COSEIK.2021.34.4.213
  10. Mackie, K.R., Stojadinovic, B. (2006) Post-Earthquake Functionality of Highway Overpass Bridges, Earthq. Eng. & Struct. Dyn., 35(1), pp.77~93. https://doi.org/10.1002/eqe.534
  11. Mander, J.B., Priestley, M.J., Park, R. (1988) Theoretical Stress-Strain Model for Confined Concrete, J. Struct. Eng., 114(8), pp.1804~1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  12. McKenna, F. (2011) OpenSees: A Framework for Earthquake Engineering Simulation, Comp. Sci. & Eng., 13(4), pp.58~66. https://doi.org/10.1109/MCSE.2011.66
  13. Medina, R.A., Krawinkler, H. (2003) Seismic Demands for Nondeteriorating Frame Structures and Their Dependence on Ground Motion, Report No. 144, Stanford University.
  14. Mokha, A., Constantinou, M., Reinhorn, A. (1990) Teflon Bearings in Base Isolation I: Testing, J. Struct. Eng., 116(2), pp.438~454. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:2(438)
  15. Moon, J.H., Kim, J.S., L ee, T.H., Han, T.S. (2017) Seismic Fragility Analysis of a LNG Tank with Friction Pendulum System of Various Friction Coefficient, J. Comput. Struct. Eng. Inst. Korea, 30(2), pp.95~102. https://doi.org/10.7734/COSEIK.2017.30.2.95
  16. Naeim, F., Kelly, J.M. (1999) Design of Seismic Isolated Structures: From Theory to Practice, John Wiley & Sons, New York. p.304.
  17. Zayas, V.A., Mahin, S.A. (1987) The FPS Earthquake Resisting System Experimental Report, UCB/EERC-87/01, Earthquake Engineering Research Center, Berkeley.