DOI QR코드

DOI QR Code

Novel polymorphisms of dopa decarboxylase gene and their association with lamb quality traits in Indonesian sheep

  • Ratna Sholatia Harahap (Graduate School of Animal Production and Technology, Faculty of Animal Science, IPB University) ;
  • Ronny Rachman Noor (Department of Animal Production and Technology, Faculty of Animal Science, IPB University) ;
  • Yuni Cahya Endrawati (Department of Animal Production and Technology, Faculty of Animal Science, IPB University) ;
  • Huda Shalahudin Darusman (Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary Medicine, IPB University) ;
  • Asep Gunawan (Department of Animal Production and Technology, Faculty of Animal Science, IPB University)
  • Received : 2022.06.09
  • Accepted : 2022.11.02
  • Published : 2023.06.01

Abstract

Objective: This study aimed to investigate the polymorphisms of the dopa decarboxylase (DDC) gene and association analysis with lamb quality and expression quantification of the DDC gene in phenotypically divergent Indonesian sheep. Methods: The totals of 189 rams with an average body weight of 24.12 kg at 10 to 12 months were used to identify DDC gene polymorphism using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Among 189 rams, several rams representing various sheep genotypes were used for an association study between genotypes and phenotypic traits with proc general linear model (GLM) analysis. In addition, the gene expression analysis of the DDC mRNA in the phenotypically divergent sheep population was analyzed using quantitative reverse-transcription PCR. Results: The DDC gene (g. 5377439 G>A) showed polymorphisms that indicated three genotypes: AA, AG, and GG. The DDC gene polymorphism was significantly associated (p≤0.05) with carcass characteristics including carcass percentage, carcass length, hot and cold carcass; physical properties of lamb quality including pH value; retail cut carcass; fatty acid composition such as fat content, pentadecanoic acid (C15:0), tricosylic acid (C23:0), lignoceric acid (C24:0), oleic acid (C18:1n9c), elaidic acid (C18:1n9t), nervonic acid (C24:1), linoleic acid (C18:2n6c), arachidonic acid (C20:4n6), cervonic acid (C22:6n3); and mineral content including potassium (K). The GG genotype of the DDC gene had the best association with lamb quality traits. The DDC gene expression analysis mRNA showed no significant difference (p≥0.05) between lamb quality traits. Conclusion: The DDC gene could be used as a potential candidate gene to improve lamb quality.

Keywords

Acknowledgement

This research was funded by the Directorate General of Resources for Science, Technology and Higher Education, Ministry of Research, Technology and Higher Education Contract. Number: 001/E5/PG.02.00PT/2022 date 16 March 2022. The funder had no role in carrying out the experiment, writing the manuscript, and the decision to submit the manuscript for publication.

References

  1. Organisation for Economic Co-Operation and Development-Food and Agriculture Organization on The United Nations [Internet]. 2022 [cited 2022 March 8]. Available from: https://stats.oecd.org/Index.aspx?DataSetCode=HIGH_AGLINK_2019 
  2. Shija DS, Mtenga LA, Kimambo AE, et al. Chemical composition and meat quality attributes of indigenous sheep and goats from traditional production system in Tanzania. Asian-Australas J Anim Sci 2013;26:295-302. https://doi. org/10. 5713/ajas. 2012. 12432  https://doi.org/10.5713/ajas.2012.12432
  3. Listyarini K, Jakaria, Uddin MJ, Sumantri C, Gunawan A. Association and expression of CYP2A6 AND KIF12 genes related to lamb flavour and odor. Trop Anim Sci J 2018;41:100-7. https://doi. org/10. 5398/tasj. 2018. 41. 2. 100  https://doi.org/10.5398/tasj.2018.41.2.100
  4. Van Elswyk ME, McNeill SH. Impact of grass/forage feeding versus grain finishing on beef nutrients and sensory quality: The U. S. experience. Meat Sci 2014;96:535-40. https://doi. org/10. 1016/j. meatsci. 2013. 08. 010  https://doi.org/10.1016/j.meatsci.2013.08.010
  5. Frank D, Joo ST, Warner R. Consumer acceptability of intramuscular fat. Korean J Food Sci Anim Resour 2016;36:699-708. https://doi. org/10. 5851/kosfa. 2016. 36. 6. 699  https://doi.org/10.5851/kosfa.2016.36.6.699
  6. Kyselova J, Tichy L, Jochova K. The role of molecular genetics in animal breeding: a minireview. Czech J Anim Sci 2021;66:107-11. https://doi. org/10. 17221/251/2020-CJAS  https://doi.org/10.17221/251/2020-CJAS
  7. Gunawan A, Listyarini K, Harahap RS, et al. Hepatic transcriptome analysis identifies genes, polymorphisms and pathways involved in the fatty acids metabolism in sheep. PLoS One 2021;16:e0260514. https://doi. org/10. 1371/journal. pone. 0260514  https://doi.org/10.1371/journal.pone.0260514
  8. Harahap RS, Noor RR, Gunawan A. 2021. Effect of CYP2E1 gene polymorphisms on lamb odor and flavour in indonesian sheep. The 3th International Conference of Animal Science and Technology (ICAST); 2020 Nov 3; Makassar, Indonesia. IOP Conf Ser Earth Environ Sci 2021;788:012022. https://doi. org/10.1088/1755-1315/788/1/012022 
  9. Azizah D, Noor RR, Gunawan A. Investigation of leptin receptor (LEPR) gene polymorphism and association with carcass characteristic and meat quality in sheep. JIPTHP 2020;8:124-30. https://doi. org/10. 29244/jipthp. 8. 3. 124-130  https://doi.org/10.29244/jipthp.8.3.124-130
  10. Wang X, Shi T, Zhao Z, Hou H, Zhang L. Proteomic analyses of sheep (ovis aries) embryonic skeletal muscle. Sci Rep 2020;10:1750. https://doi. org/10. 1038/s41598-020-58349-0  https://doi.org/10.1038/s41598-020-58349-0
  11. Kojima K, Nakajima T, Taga N, et al. Gene therapy improves motor and mental function of aromatic l-amino acid decarboxylase deficiency. Brain 2019;142:322-33. https://doi. org/10. 1093/brain/awy331  https://doi.org/10.1093/brain/awy331
  12. Himmelreich N, Montioli R, Bertoldi M, et al. Aromatic amino acid decarboxylase deficiency: Molecular and metabolic basis and therapeutic outlook. Mol Genet Metab 2019;127:12-22. https://doi. org/10. 1016/j. ymgme. 2019. 03. 009  https://doi.org/10.1016/j.ymgme.2019.03.009
  13. Prickett AR, Montibus B, Barkas N, et al. Imprinted gene expression and function of the dopa decarboxylase gene in the developing heart. Front Cell Dev Biol 2021;9:676543. https://doi. org/10. 3389/fcell. 2021. 676543  https://doi.org/10.3389/fcell.2021.676543
  14. Fernnndez-Reina A, Urdiales JL, Sanchez-Jimenez F. What we know and what we need to know about aromatic and cationic biogenic amines in the gastrointestinal tract. Foods 2018;7:145. https://doi. org/10. 3390/foods7090145  https://doi.org/10.3390/foods7090145
  15. Dagong MIA, Herman R, Sumantri C, Noor R, Yamin M. Carcass and physical meat characteristics of thin tail sheep (TTS) based on calpastatin gene (CAST) (Locus intron 5-exon 6) genotypes variation. Indonesian J Anim Vet Sci 2012;17:13-24. https://doi. org/10. 14334/jitv. v17i1. 708  https://doi.org/10.14334/jitv.v17i1.708
  16. Latimer GW. Official methods of analysis of AOAC international. 19th ed. Gaithersburg MD, USA: AOAC International; 2012.
  17. Cinar MU, Kayan A, Uddin MJ, et al. Association and expression quantitative trait loci (eQTL) analysis of porcine AMBP, GC and PPP1R3B genes with meat quality traits. Mol Biol Rep 2012;39:4809-21. https://doi. org/10. 1007/s11033-011-1274-4  https://doi.org/10.1007/s11033-011-1274-4
  18. Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath 2013;3:71-85.
  19. Lachance J. Hardy-Weinberg equilibrium and random mating. In: Kliman RM, editor. Encyclopedia of evolutionary. Waltham, MA, USA: Academic Press; 2016. pp. 208-11. https://doi.org/10.1016/B978-0-12-800049-6.00022-6 
  20. Yalcintan H, Ekiz B, Kocak O, Dogan N, Akin PD, Yilmaz A. Carcass and meat quality characteristics of lambs reared in different seasons. Arch Anim Breed 2017;60:225-33. https://doi. org/10. 5194/aab-60-225-2017  https://doi.org/10.5194/aab-60-225-2017
  21. Purbowati E, Lestari CMS, Adiwinarti R, et al. Productivity and carcass characteristics of lambs fed fibrous agricultural wastes to substitute grass. Vet World 2021;14:1559-63. https://doi. org/10. 14202/vetworld. 2021. 1559-1563  https://doi.org/10.14202/vetworld.2021.1559-1563
  22. Utama DT, Baek KH, Jeong HS, Yoon SK, Joo ST, Lee SK. Effects of cooking method and final core-temperature on cooking loss, lipid oxidation, nucleotide-related compounds and aroma volatiles of Hanwoo brisket. Asian-Australas J Anim Sci 2018;31:293-300. https://doi. org/10. 5713/ajas. 17. 0217  https://doi.org/10.5713/ajas.17.0217
  23. Kim TW, Kim CW, Kwon SG, et al. pH as analytical indicator for managing pork meat quality. Sains Malaysiana 2016;45:1097-103. https://doi. org/10. 5851/kosfa. 2016. 36. 1. 29  https://doi.org/10.5851/kosfa.2016.36.1.29
  24. Wang B, Wang Z, Chen Y, et al. Carcass traits, meat quality, and volatile compounds of lamb meat from different restricted grazing time and indoor supplementary feeding systems. Foods 2021;10:2822. https://doi. org/10. 3390/foods10112822  https://doi.org/10.3390/foods10112822
  25. Polidori P, Pucciarelli S, Cammertoni N, Polzonetti V, Vincenzetti S. The effects of slaughter age on carcass and meat quality of Fabrianese lambs. Small Rumin Res 2017;155:12-5. https://doi. org/10. 1016/j. smallrumres. 2017. 08. 012  https://doi.org/10.1016/j.smallrumres.2017.08.012
  26. Hasanah U, Hasnudi, Mirwandhono, Ginting N, Patriani P, Baihaqi M. Carcass composition of fat tailed sheep at different slaughter weight. IOP Conf Ser Earth Environ Sci 2019;260:012055. https://doi. org/10. 1088/1755-1315/260/1/012055  https://doi.org/10.1088/1755-1315/260/1/012055
  27. Majdoub-Mathlouthi L, Said B, Say A, Kraiem K. Effect of concentrate level and slaughter body weight on growth performances, carcass traits and meat quality of Barbarine lambs fed oat hay based diet. Meat Sci 2013;93:557-63. https://doi. org/10. 1016/j. meatsci. 2012. 10. 012  https://doi.org/10.1016/j.meatsci.2012.10.012
  28. Furqon, A Gunawan, N Ulupi, T Suryati, C Sumantri. Expression and association of SCD gene polymorphisms and fatty acid compositions in chicken cross. Media Peternakan 2017;40:151-7. https://doi. org/10. 5398/medpet. 2017. 40. 3. 151  https://doi.org/10.5398/medpet.2017.40
  29. Gunawan A, Harahap RS, Listyarini K, Sumantri C. Identification of DGAT1 gene polymorphisms and its association with carcass characteristics and fatty acid traits in sheep. JITRO 2019;6:267-74. https://doi.org/10.33772/jitro.v6i2.7142
  30. Harahap RS, Gunawan A, Noor RR. The polymorphism and expression of CYP2E1 gene and its relation to carcass and meat quality of Indonesian lamb. Trop Anim Sci J 2021;44:377-85. https://doi. org/10. 5398/tasj. 2021. 44. 4. 377  https://doi.org/10.5398/tasj.2021.44.4.377
  31. Senyilmaz-Tiebe D, Pfaff DH, Virtue S, et al. Dietary stearic acid regulates mitochondria in vivo in humans. Nat Commun 2018;9:3129. https://doi. org/10. 1038/s41467-018-05614-6  https://doi.org/10.1038/s41467-018-05614-6
  32. Sahadevan S, Gunawan A, Tholen E, et al. Pathway based analysis of genes and interactions influencing porcine testis samples from boars with divergent androstenone content in back fat. PLoS One 2014;9:e91077. https://doi. org/10. 1371/journal. pone. 0091077  https://doi.org/10.1371/journal.pone.0091077
  33. Chen J, Liu H. Nutritional indices for assessing fatty acids: a mini-review. Int J Mol Sci 2020;21:5695. https://doi. org/10. 3390/ijms21165695  https://doi.org/10.3390/ijms21165695
  34. Weaver CM. Potassium and health. Adv Nutr 2013;4:368S-77S. https://doi. org/10. 3945/an. 112. 003533  https://doi.org/10.3945/an.112.003533
  35. National Institutes of Health. Potassium [Internet]. Bethesda, MD, USA: c2022 [cited 2022 Aug 20]. Available from: https://ods.od.nih.gov/factsheets/Potassium-HealthProfessional/ 
  36. Frakolaki E, Kalliampakou KI, Kaimou P, et al. Emerging role of l-dopa decarboxylase in flaviviridae virus infections. Cells 2019;8:837. https://doi. org/10. 3390/cells8080837 https://doi.org/10.3390/cells8080837