Acknowledgement
This research was funded by a grant (NRF-2021R1A2C2005236) from the National Research Foundation, Republic of Korea.
References
- Lu M, Xing H, Xun Z, et al. Exosome-based small RNA delivery: progress and prospects. Asian J Pharm 2018;13:1-11. https://doi.org/10.1016/j.ajps.2017.07.008
- Bakhshandeh B, Amin Kamaleddin M, Aalishah K. A comprehensive review on exosomes and microvesicles as epigenetic factors. Curr Stem Cell Res Ther 2017;12:31-6. https://doi.org/10.2174/1574888X11666160709211528
- Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics 2010;73:1907-20. https://doi.org/10.1016/j.jprot.2010.06.006
- Gross JC, Chaudhary V, Bartscherer K, Boutros M. Active Wnt proteins are secreted on exosomes. Nat Cell Biol 2012; 14:1036-45. https://doi.org/10.1038/ncb2574
- Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell 2016;164:1226-32. https://doi.org/10.1016/j.cell.2016.01.043
- Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97. https://doi.org/10.1016/S0092-8674(04)00045-5
- He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004;5:522-31. https://doi.org/10.1038/nrg1379
- Melo SA, Sugimoto H, O'Connell JT, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 2014;26:707-21. https://doi.org/10.1016/j.ccell.2014.09.005
- Hannafon BN, Ding WQ. Intercellular communication by exosome-derived microRNAs in cancer. Int J Mol Sci 2013;14:14240-69. https://doi.org/10.3390/ijms140714240
- Li XJ, Ren ZJ, Tang JH, Yu Q. Exosomal MicroRNA MiR1246 promotes cell proliferation, invasion and drug resistance by targeting CCNG2 in breast cancer. Cell Physiol Biochem 2017;44:1741-8. https://doi.org/10.1159/000485780
- Jeong K, Yu YJ, You JY, Rhee WJ, Kim JA. Exosome-mediated microrna-497 delivery for anti-cancer therapy in a microfluidic 3d lung cancer model. Lab Chip 2020;20:548-57. https://doi.org/10.1039/c9lc00958b
- Lee GW, Thangavelu M, Choi MJ, et al. Exosome mediated transfer of miRNA-140 promotes enhanced chondrogenic differentiation of bone marrow stem cells for enhanced cartilage repair and regeneration. J Cell Biochem 2020;121:3642-52. https://doi.org/10.1002/jcb.29657
- Rezaei R, Baghaei K, Amani D, et al. Exosome-mediated delivery of functionally active miRNA-375-3p mimic regulate epithelial mesenchymal transition (EMT) of colon cancer cells. Life Sci 2021;269:119035. https://doi.org/10.1016/j.lfs.2021.119035
- Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles-endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta Rev Cancer 2014;1846: 75-87. https://doi.org/10.1016/j.bbcan.2014.04.005
- Lamichhane TN, Raiker RS, Jay SM. Exogenous DNA loading into extracellular vesicles via electroporation is size-dependent and enables limited gene delivery. Mol Pharmaceutics 2015; 12:3650-7. https://doi.org/10.1021/acs.molpharmaceut.5b00364
- Paranjpe M, Muller-Goymann CC. Nanoparticle-mediated pulmonary drug delivery: a review. Int J Mol Sci 2014;15: 5852-73. https://doi.org/10.3390/ijms15045852
- Tan S, Wu T, Zhang D, Zhang Z. Cell or cell membrane-based drug delivery systems. Theranostics 2015;5:863-81. https://doi.org/10.7150/thno.11852
- Wu Y, Liu Y, Wang Q, et al. MiR-20a-5p is multifunctional regulator in chickens immune responses induced by NDV, IBDV and AIV vaccines respectively. Res Sq 2021 Nov 10 [preprint]. https://doi.org/10.21203/rs.3.rs-1025677/v1
- Philippe L, Alsaleh G, Pichot A, et al. MiR-20a regulates ASK1 expression and TLR4-dependent cytokine release in rheumatoid fibroblast-like synoviocytes. Ann Rheum Dis 2013;72:1071-9. https://doi.org/10.1136/annrheumdis- 2012-201654
- Zhang G, Liu X, Wang W, et al. Down-regulation of miR20a-5p triggers cell apoptosis to facilitate mycobacterial clearance through targeting JNK2 in human macrophages. Cell Cycle 2016;15:2527-38. https://doi.org/10.1080/15384101.2016.1215386
- Chang R, Yi S, Tan X, et al. MicroRNA-20a-5p suppresses IL-17 production by targeting OSM and CCL1 in patients with Vogt-Koyanagi-Harada disease. Br J Ophthalmol 2018; 102:282-90. https://doi.org/10.1136/bjophthalmol-2017-311079
- Hong Y, Truong AD, Lee J, et al. Exosomal miRNA profiling from H5N1 avian influenza virus-infected chickens. Vet Res 2021;52:36. https://doi.org/10.1186/s13567-021-00892-3
- Klasing KC, Peng RK. Influence of cell sources, stimulating agents, and incubation conditions on release of interleukin-1 from chicken macrophages. Dev Comp Immunol 1987;11: 385-94. https://doi.org/10.1016/0145-305X(87)90082-6
- Hong Y, Lee J, Vu TH, Lee S, Lillehoj HS, Hong YH. Immunomodulatory effects of avian β-defensin 5 in chicken macrophage cell line. Res Vet Sci 2020;132:81-7. https://doi.org/10.1016/j.rvsc.2020.06.002
- Kim H, Rhee WJ. Exosome-mediated let7c-5p delivery for breast cancer therapeutic development. Biotechnol Bioprocess Eng 2020;25:513-20. https://doi.org/10.1007/s12257-020-0002-0
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2- △△CT method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262
- Fu X, Qie J, Fu Q, Chen J, Jin Y, Ding Z. miR-20a-5p/TGFBR2 axis affects pro-inflammatory macrophages and aggravates liver fibrosis. Front Oncol 2020;10:107. https://doi.org/10.3389/fonc.2020.00107
- Xiong Y, Zhang L, Kebebew E. MiR-20a is upregulated in anaplastic thyroid cancer and targets LIMK1. PLoS One 2014;9:e96103. https://doi.org/10.1371/journal.pone.0096103
- Wang M, Gu H, Qian H, et al. miR-17-5p/20a are important markers for gastric cancer and murine double minute 2 participates in their functional regulation. Eur J Cancer 2013;49: 2010-21. https://doi.org/10.1016/j.ejca.2012.12.017
- Guo L, Zhu Y, Li L, et al. Breast cancer cell-derived exosomal miR-20a-5p promotes the proliferation and differentiation of osteoclasts by targeting SRCIN1. Cancer Med 2019;8:5687-701. https://doi.org/10.1002/cam4.2454
- Laengsri V, Kerdpin U, Plabplueng C, Treeratanapiboon L, Nuchnoi P. Cervical cancer markers: epigenetics and microRNAs. Lab Med 2018;49:97-111. https://doi.org/10.1093/labmed/lmx080
- Hirayama D, Iida T, Nakase H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int J Mol Sci 2018;19:92. https://doi.org/10.3390/ijms19010092
- Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-κB by toll-like receptor 3. Nature 2001;413:732-8. https://doi.org/10.1038/35099560
- Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signaling. Ann NY Acad Sci 2008;1143:1-20. https://doi.org/10.1196/annals.1443.020
- Jorgovanovic D, Song M, Wang L, Zhang Y. Roles of IFN-γ in tumor progression and regression: a review. Biomark Res 2020;8:49. https://doi.org/10.1186/s40364-020-00228-x
- Tang M, Tian L, Luo G, Yu X. Interferon-gamma-mediated osteoimmunology. Front Immunol 2018;9:1508. https://doi.org/10.3389/fimmu.2018.01508
- Kim YM, Shin EC. Type I and III interferon responses in SARS-CoV-2 infection. Exp Mol Med 2021;53:750-60. https://doi.org/10.1038/s12276-021-00592-0
- Johnsen IB, Nguyen TT, Bergstrom B, Lien E, Anthonsen MW. Toll-like receptor 3-elicited MAPK activation induces stabilization of interferon-β mRNA. Cytokine 2012;57:337-46. https://doi.org/10.1016/j.cyto.2011.11.024
- Peroval MY, Boyd AC, Young JR, Smith AL. A critical role for MAPK signalling pathways in the transcriptional regulation of toll like receptors. PloS One 2013;8:e51243. https://doi.org/10.1371/journal.pone.0051243
- Sun R, Zhang Y, Lv Q, et al. Toll-like receptor 3 (TLR3) induces apoptosis via death receptors and mitochondria by up-regulating the transactivating p63 isoform α (TAP63α). J Biol Chem 2011;286:15918-28. https://doi.org/10.1074/jbc.M110.178798
- Richer MJ, Lavallee DJ, Shanina I, Horwitz MS. Toll-like receptor 3 signaling on macrophages is required for survival following coxsackievirus B4 infection. PloS One 2009;4: e4127. https://doi.org/10.1371/journal.pone.0004127
- Idriss HT, Naismith JH. TNFα and the TNF receptor superfamily: Structure-function relationship (s). Microsc Res Tech 2000;50:184-95. https://doi.org/10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-H
- Liu Q, Zhou YH, Yang ZQ. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol 2016;13:3-10. https://doi.org/10.1038/cmi.2015.74
- Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol Mol Biol Rev 2012;76:16-32. https://doi.org/10.1128/MMBR.05015-11
- D'Elia RV, Harrison K, Oyston PC, Lukaszewski RA, Clark GC. Targeting the "cytokine storm" for therapeutic benefit. Clin Vaccine Immunol 2013;20:319-27. https://doi.org/10.1128/cvi.00636-12
- Gu Y, Zuo X, Zhang S, et al. The mechanism behind influenza virus cytokine storm. Viruses 2021;13:1362. https://doi.org/10.3390/v13071362
- Yu J, Sun X, Goie JYG, Zhang Y. Regulation of host immune responses against influenza a virus infection by mitogen-activated protein kinases (MAPKs). Microorganisms 2020;8:1067. https://doi.org/10.3390/microorganisms8071067