DOI QR코드

DOI QR Code

Evaluation of trueness and precision of removable partial denture metal frameworks manufactured with digital technology and different materials

  • Leonardo Ciocca (Oral and Maxillo-Facial Prosthodontics, Section of Prosthodontics, Department of Biomedical and Neuromotor Science, Alma Mater Studiorum University of Bologna) ;
  • Mattia Maltauro (Department of Management and Engineering, University of Padova) ;
  • Elena Pierantozzi (Oral and Maxillo-Facial Prosthodontics, Section of Prosthodontics, Department of Biomedical and Neuromotor Science, Alma Mater Studiorum University of Bologna) ;
  • Lorenzo Breschi (Oral and Maxillo-Facial Prosthodontics, Section of Prosthodontics, Department of Biomedical and Neuromotor Science, Alma Mater Studiorum University of Bologna) ;
  • Angela Montanari (Department of Statistical Sciences, Alma Mater Studiorum University of Bologna) ;
  • Laura Anderlucci (Department of Statistical Sciences, Alma Mater Studiorum University of Bologna) ;
  • Roberto Meneghello (Department of Management and Engineering, University of Padova)
  • Received : 2022.09.29
  • Accepted : 2023.01.31
  • Published : 2023.04.30

Abstract

PURPOSE. The aim of this study is to evaluate the accuracy of removable partial denture (RPD) frameworks produced using different digital protocols. MATERIALS AND METHODS. 80 frameworks for RPDs were produced using CAD-CAM technology and divided into four groups of twenty (n = 20): Group 1, Titanium frameworks manufactured by digital metal laser sintering (DMLS); Group 2, Co-Cr frameworks manufactured by DMLS; Group 3, Polyamide PA12 castable resin manufactured by multi-jet fusion (MJF); and Group 4, Metal (Co-Cr) casting by using lost-wax technique. After the digital acquisition, eight specific areas were selected in order to measure the Δ-error value at the intaglio surface of RPD. The minimum value required for point sampling density (0.4 mm) was derived from the sensitivity analysis. The obtained Δ-error mean value was used for comparisons: 1. between different manufacturing processes; 2. between different manufacturing techniques in the same area of interest (AOI); and 3. between different AOI of the same group. RESULTS. The Δ-error mean value of each group ranged between -0.002 (Ti) and 0.041 (Co-Cr) mm. The Pearson's Chi-squared test revealed significant differences considering all groups paired two by two, except for group 3 and 4. The multiple comparison test documented a significant difference for each AOI among group 1, 3, and 4. The multiple comparison test showed significant differences among almost all different AOIs of each group. CONCLUSION. All Δ-mean error values of all digital protocols for manufacturing RPD frameworks optimally fit within the clinical tolerance limit of trueness and precision.

Keywords

Acknowledgement

Authors thank Dr. Andrea Sandi for his kind assistance in providing the manufacturing of frameworks used in this study.

References

  1. Wu J, Wang X, Zhao X, Zhang C, Gao B. A study on the fabrication method of removable partial denture framework by computer-aided design and rapid prototyping. Rapid Prototyp J 2012;18:318-23. https://doi.org/10.1108/13552541211231743
  2. Han J, Wang Y, Lu P. A preliminary report of designing removable partial denture frameworks using a specifically developed software package. Int J Prosthodont 2010;23:370-5.
  3. Yang L, Cheng X, Dai N, Zhu S, Yan G, Gao Y. Computer aided design and manufacture of the removable partial denture framework. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2010;27:170-3.
  4. Gao B, Wu J, Zhao X, Tan H. Fabricating titanium denture base plate by laser rapid forming. Rapid Prototyp J 2009;15:133-6. https://doi.org/10.1108/13552540910943432
  5. Bibb RJ, Eggbeer D, Williams RJ, Woodward A. Trial fitting of a removable partial denture framework made using computer-aided design and rapid prototyping techniques. Proc Inst Mech Eng H 2006;220:793-7. https://doi.org/10.1243/09544119JEIM62
  6. Bibb R, Eggbeer D, Williams R. Rapid manufacture of removable partial denture frameworks. Rapid Prototyp J 2006;12:95-9. https://doi.org/10.1108/13552540610652438
  7. Williams RJ, Bibb R, Eggbeer D, Collis J. Use of CAD/ CAM technology to fabricate a removable partial denture framework. J Prosthet Dent 2006;96:96-9. https://doi.org/10.1016/j.prosdent.2006.05.029
  8. Ye H, Ning J, Li M, Niu L, Yang J, Sun Y, Zhou Y. Preliminary clinical application of removable partial denture frameworks fabricated using computer-aided design and rapid prototyping techniques. Int J Prosthodont 2017;30:348-53. https://doi.org/10.11607/ijp.5270
  9. Hayama H, Fueki K, Wadachi J, Wakabayashi N. Trueness and precision of digital impressions obtained using an intraoral scanner with different head size in the partially edentulous mandible. J Prosthodont Res 2018;62:347-52. https://doi.org/10.1016/j.jpor.2018.01.003
  10. Lytle RB. Soft tissue displacement beneath removable partial and complete dentures. J Prosthet Dent 1962;12:34-43. https://doi.org/10.1016/0022-3913(62)90005-7
  11. Seelbach P, Brueckel C, Wostmann B. Accuracy of digital and conventional impression techniques and workflow. Clin Oral Investig 2013;17:1759-64. https://doi.org/10.1007/s00784-012-0864-4
  12. Kattadiyil MT, Mursic Z, AlRumaih H, Goodacre CJ. Intraoral scanning of hard and soft tissues for partial removable dental prosthesis fabrication. J Prosthet Dent 2014;112:444-8. https://doi.org/10.1016/j.prosdent.2014.03.022
  13. Muller P, Ender A, Joda T, Katsoulis J. Impact of digital intraoral scan strategies on the impression accuracy using the TRIOS Pod scanner. Quintessence Int 2016;47:343-9.
  14. Bilgin M, Baytaroglu E, Erdem A, Dilber E. A review of computer-aided design/computer-aided manufacture techniques for removable denture fabrication. Eur J Dent 2016;10:286-91. https://doi.org/10.4103/1305-7456.178304
  15. Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J 2015;219:521-9. https://doi.org/10.1038/sj.bdj.2015.914
  16. Hazeveld A, Huddleston Slater JJ, Ren Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am J Orthod Dentofacial Orthop 2014;145:108-15. https://doi.org/10.1016/j.ajodo.2013.05.011
  17. Revilla-Leon M, Ozcan M. Additive manufacturing technologies used for processing polymers: current status and potential application in prosthetic dentistry. J Prosthodont 2019;28:146-58. https://doi.org/10.1111/jopr.12801
  18. Tasaka A, Shimizu T, Kato Y, Okano H, Ida Y, Higuchi S, Yamashita S. Accuracy of removable partial denture framework fabricated by casting with a 3D printed pattern and selective laser sintering. J Prosthodont Res 2020;64:224-30. https://doi.org/10.1016/j.jpor.2019.07.009
  19. Tasaka A, Kato Y, Odaka K, Matsunaga S, Goto TK, Abe S, Yamashita S. Accuracy of clasps fabricated with three different CAD/CAM technologies: casting, milling, and selective laser sintering. Int J Prosthodont 2019;32:526-9. https://doi.org/10.11607/ijp.6363
  20. Ciocca L, Maltauro M, Cimini V, Breschi L, Meneghello R. Outdoing best-fit approaches for the manufacturing accuracy evaluation of complete denture bases. Int J Interact Des Manuf 2022;2022:1-9.
  21. Xie W, Zheng M, Wang J, Li, X. The effect of build orientation on the microstructure and properties of selective laser melting Ti-6Al-4V for removable partial denture clasps. J Prosthet Dent 2020;123:163-72. https://doi.org/10.1016/j.prosdent.2018.12.007
  22. Kajima Y, Takaichi A, Nakamoto T, Kimura T, Yogo Y, Ashida M, Doi H, Nomura N, Takahashi H, Hanawa T, Wakabayashi N. Fatigue strength of Co-Cr-Mo alloy clasps prepared by selective laser melting. J Mech Behav Biomed Mater 2016;59:446-58. https://doi.org/10.1016/j.jmbbm.2016.02.032
  23. Stern MA, Brudvik JS, Frank RP. Clinical evaluation of removable partial denture rest seat adaptation. J Prosthet Dent 1985;53:658-62. https://doi.org/10.1016/0022-3913(85)90015-0
  24. Gowri V, Patil NP, Nadiger RK, Guttal SS. Effect of anchorage on the accuracy of fit in removable partial denture framework. J Prosthodont 2010;19:387-90. https://doi.org/10.1111/j.1532-849X.2010.00594.x
  25. Dunham D, Brudvik JS, Morris WJ, Plummer KD, Cameron SM. A clinical investigation of the fit of removable partial dental prosthesis clasp assemblies. J Prosthet Dent 2006;95:323-6. https://doi.org/10.1016/j.prosdent.2006.02.001
  26. Chen H, Li H, Zhao Y, Zhang X, Wang Y, Lyu P. Adaptation of removable partial denture frameworks fabricated by selective laser melting. J Prosthet Dent 2019; 122:316-24. https://doi.org/10.1016/j.prosdent.2018.11.010
  27. Lee JW, Park JM, Park EJ, Heo SJ, Koak JY, Kim SK. Accuracy of a digital removable partial denture fabricated by casting a rapid prototyped pattern: A clinical study. J Prosthet Dent 2017;118:468-74. https://doi.org/10.1016/j.prosdent.2016.12.007
  28. Oh KC, Yun BS, Kim JH. Accuracy of metal 3D printed frameworks for removable partial dentures evaluated by digital superimposition. Dent Mater 2022;38:309-17.  https://doi.org/10.1016/j.dental.2021.12.012