DOI QR코드

DOI QR Code

The Multi-Faceted Consequences of NRF2 Activation throughout Carcinogenesis

  • Christopher J. Occhiuto (Department of Pharmacology and Toxicology, Michigan State University) ;
  • Jessica A. Moerland (Department of Pharmacology and Toxicology, Michigan State University) ;
  • Ana S. Leal (Department of Pharmacology and Toxicology, Michigan State University) ;
  • Kathleen A. Gallo (Department of Physiology, Michigan State University) ;
  • Karen T. Liby (Department of Pharmacology and Toxicology, Michigan State University)
  • 투고 : 2022.12.16
  • 심사 : 2023.02.22
  • 발행 : 2023.03.31

초록

The oxidative balance of a cell is maintained by the Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway. This cytoprotective pathway detoxifies reactive oxygen species and xenobiotics. The role of the KEAP1/NRF2 pathway as pro-tumorigenic or anti-tumorigenic throughout stages of carcinogenesis (including initiation, promotion, progression, and metastasis) is complex. This mini review focuses on key studies describing how the KEAP1/NRF2 pathway affects cancer at different phases. The data compiled suggest that the roles of KEAP1/NRF2 in cancer are highly dependent on context; specifically, the model used (carcinogen-induced vs genetic), the tumor type, and the stage of cancer. Moreover, emerging data suggests that KEAP1/NRF2 is also important for regulating the tumor microenvironment and how its effects are amplified either by epigenetics or in response to co-occurring mutations. Further elucidation of the complexity of this pathway is needed in order to develop novel pharmacological tools and drugs to improve patient outcomes.

키워드

과제정보

This minireview is dedicated in memory of Michael B. Sporn, the "Father of Chemoprevention." The work was supported by NIH R01CA226690, MTRAC for Life Sciences Innovation Hub-Mi-Kickstart Award, the Breast Cancer Research Foundation, and the MSU Discretionary Funding Initiative (all to K.T.L.). Additional funding was provided by the Barnett Rosenberg Endowed Research Assistantship (J.A.M.), Aitch Foundation (J.A.M.), Integrative Pharmacological Sciences Training Program 5T32GM142521 (C.J.O.), and DOD Career Development Award LC210240 (A.S.L.).

참고문헌

  1. Aktipis, C.A., Kwan, V.S.Y., Johnson, K.A., Neuberg, S.L., and Maley, C.C. (2011). Overlooking evolution: a systematic analysis of cancer relapse and therapeutic resistance research. PLoS One 6, e26100.
  2. Alam, M.M., Okazaki, K., Nguyen, L.T.T., Ota, N., Kitamura, H., Murakami, S., Shima, H., Igarashi, K., Sekine, H., and Motohashi, H. (2017). Glucocorticoid receptor signaling represses the antioxidant response by inhibiting histone acetylation mediated by the transcriptional activator NRF2. J. Biol. Chem. 292, 7519-7530. https://doi.org/10.1074/jbc.M116.773960
  3. Alfarouk, K.O., Stock, C.M., Taylor, S., Walsh, M., Muddathir, A.K., Verduzco, D., Bashir, A.H.H., Mohammed, O.Y., Elhassan, G.O., Harguindey, S., et al. (2015). Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int. 15, 71.
  4. Ashrafizadeh, M., Ahmadi, Z., Mohammadinejad, R., Farkhondeh, T., and Samarghandian, S. (2020). Curcumin activates the Nrf2 pathway and induces cellular protection against oxidative injury. Curr. Mol. Med. 20, 116-133.
  5. Bar-Peled, L., Kemper, E.K., Suciu, R.M., Vinogradova, E.V., Backus, K.M., Horning, B.D., Paul, T.A., Ichu, T.A., Svensson, R.U., Olucha, J., et al. (2017). Chemical proteomics identifies druggable vulnerabilities in a genetically defined cancer. Cell 171, 696-709.e23. https://doi.org/10.1016/j.cell.2017.08.051
  6. Best, S.A., de Souza, D.P., Kersbergen, A., Policheni, A.N., Dayalan, S., Tull, D., Rathi, V., Gray, D.H., Ritchie, M.E., McConville, M.J., et al. (2018). Synergy between the KEAP1/NRF2 and PI3K pathways drives non-small-cell lung cancer with an altered immune microenvironment. Cell Metab. 27, 935-943.e4. https://doi.org/10.1016/j.cmet.2018.02.006
  7. Best, S.A., Ding, S., Kersbergen, A., Dong, X., Song, J.Y., Xie, Y., Reljic, B., Li, K., Vince, J.E., Rathi, V., et al. (2019). Distinct initiating events underpin the immune and metabolic heterogeneity of KRAS-mutant lung adenocarcinoma. Nat. Commun. 10, 4190.
  8. Bouvard, V., Baan, R., Straif, K., Grosse, Y., Secretan, B., el Ghissassi, F., Benbrahim-Tallaa, L., Guha, N., Freeman, C., Galichet, L., et al. (2009). A review of human carcinogens--part B: biological agents. Lancet Oncol. 10, 321-322. https://doi.org/10.1016/S1470-2045(09)70096-8
  9. Bowman, B.M., Montgomery, S.A., Schrank, T.P., Simon, J.M., Ptacek, T.S., Tamir, T.Y., Mulvaney, K.M., Weir, S.J., Nguyen, T.T., Murphy, R.M., et al. (2020). A conditional mouse expressing an activating mutation in NRF2 displays hyperplasia of the upper gastrointestinal tract and decreased white adipose tissue. J. Pathol. 252, 125-137. https://doi.org/10.1002/path.5504
  10. Cerutti, P.A. (1985). Prooxidant states and tumor promotion. Science 227, 375-381. https://doi.org/10.1126/science.2981433
  11. Chang, L.C., Fan, C.W., Tseng, W.K., Chein, H.P., Hsieh, T.Y., Chen, J.R., Hwang, C.C., and Hua, C.C. (2016). The ratio of Hmox1/Nrf2 mRNA level in the tumor tissue is a predictor of distant metastasis in colorectal cancer. Dis. Markers 2016, 8143465.
  12. Chartoumpekis, D.V., Yagishita, Y., Fazzari, M., Palliyaguru, D.L., Rao, U.N., Zaravinos, A., Khoo, N.K., Schopfer, F.J., Weiss, K.R., Michalopoulos, G.K., et al. (2018). Nrf2 prevents Notch-induced insulin resistance and tumorigenesis in mice. JCI Insight 3, e97735.
  13. Chen, D., Tavana, O., Chu, B., Erber, L., Chen, Y., Baer, R., and Gu, W. (2017). NRF2 is a major target of ARF in p53-independent tumor suppression. Mol. Cell 68, 224-232.e4. https://doi.org/10.1016/j.molcel.2017.09.009
  14. Chi, X., Yao, W., Xia, H., Jin, Y., Li, X., Cai, J., and Hei, Z. (2015). Elevation of HO-1 expression mitigates intestinal ischemia-reperfusion injury and restores tight junction function in a rat liver transplantation model. Oxid. Med. Cell. Longev. 2015, 986075.
  15. Chin, M.P., Bakris, G.L., Block, G.A., Chertow, G.M., Goldsberry, A., Inker, L.A., Heerspink, H.J.L., O'Grady, M., Pergola, P.E., Wanner, C., et al. (2018). Bardoxolone methyl improves kidney function in patients with chronic kidney disease stage 4 and type 2 diabetes: post-hoc analyses from bardoxolone methyl evaluation in patients with chronic kidney disease and type 2 diabetes study. Am. J. Nephrol. 47, 40-47. https://doi.org/10.1159/000486398
  16. Cristescu, R., Mogg, R., Ayers, M., Albright, A., Murphy, E., Yearley, J., Sher, X., Liu, X.Q., Lu, H., Nebozhyn, M., et al. (2018). Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362, eaar3593.
  17. DeNicola, G.M., Karreth, F.A., Humpton, T.J., Gopinathan, A., Wei, C., Frese, K., Mangal, D., Yu, K.H., Yeo, C.J., Calhoun, E.S., et al. (2011). Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106-109. https://doi.org/10.1038/nature10189
  18. Dinkova-Kostova, A.T. and Copple, I.M. (2023). Advances and challenges in therapeutic targeting of NRF2. Trends Pharmacol. Sci. 44, 137-149. https://doi.org/10.1016/j.tips.2022.12.003
  19. Dinkova-Kostova, A.T., Fahey, J.W., Kostov, R.V., and Kensler, T.W. (2017). KEAP1 and done? Targeting the NRF2 pathway with sulforaphane. Trends Food Sci. Technol. 69(Pt B), 257-269. https://doi.org/10.1016/j.tifs.2017.02.002
  20. El-Deek, H.E.M., Ahmed, A.M., and Mohammed, R.A.A. (2019). Aberration of Nrf2-Bach1 pathway in colorectal carcinoma; role in carcinogenesis and tumor progression. Ann. Diagn. Pathol. 38, 138-144. https://doi.org/10.1016/j.anndiagpath.2018.11.003
  21. Enya, T., Suzuki, H., Watanabe, T., Hirayama, T., and Hisamatsu, Y. (1997). 3-Nitrobenzanthrone, a powerful bacterial mutagen and suspected human carcinogen found in diesel exhaust and airborne particulates. Environ. Sci. Technol. 31, 2772-2776. https://doi.org/10.1021/es961067i
  22. Evans, J.J., Alkaisi, M.M., and Sykes, P.H. (2019). Tumour initiation: a discussion on evidence for a "load-trigger" mechanism. Cell Biochem. Biophys. 77, 293-308. https://doi.org/10.1007/s12013-019-00888-z
  23. Faissner, S. and Gold, R. (2019). Oral therapies for multiple sclerosis. Cold Spring Harb. Perspect. Med. 9, a032011.
  24. Fang, Y., Ye, J., Zhao, B., Sun, J., Gu, N., Chen, X., Ren, L., Chen, J., Cai, X., Zhang, W., et al. (2020). Formononetin ameliorates oxaliplatin-induced peripheral neuropathy via the KEAP1-NRF2-GSTP1 axis. Redox Biol. 36, 101677.
  25. Farkhondeh, T., Folgado, S.L., Pourbagher-Shahri, A.M., Ashrafizadeh, M., and Samarghandian, S. (2020). The therapeutic effect of resveratrol: focusing on the Nrf2 signaling pathway. Biomed. Pharmacother. 127, 110234.
  26. Feng, L., Zhao, K., Sun, L., Yin, X., Zhang, J., Liu, C., and Li, B. (2021). SLC7A11 regulated by NRF2 modulates esophageal squamous cell carcinoma radiosensitivity by inhibiting ferroptosis. J. Transl. Med. 19, 367.
  27. Fiore, A., Zeitler, L., Russier, M., Gross, A., Hiller, M.K., Parker, J.L., Stier, L., Kocher, T., Newstead, S., and Murray, P.J. (2022). Kynurenine importation by SLC7A11 propagates anti-ferroptotic signaling. Mol. Cell 82, 920-932.e7. https://doi.org/10.1016/j.molcel.2022.02.007
  28. Fuse, Y. and Kobayashi, M. (2017). Conservation of the Keap1-Nrf2 system: an evolutionary journey through stressful space and time. Molecules 22, 436.
  29. Gacesa, R., Dunlap, W.C., Barlow, D.J., Laskowski, R.A., and Long, P.F. (2016). Rising levels of atmospheric oxygen and evolution of Nrf2. Sci. Rep. 6, 27740.
  30. Galan-Cobo, A., Sitthideatphaiboon, P., Qu, X., Poteete, A., Pisegna, M.A., Tong, P., Chen, P.H., Boroughs, L.K., Rodriguez, M.L.M., Zhang, W., et al. (2019). LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutamine dependence in KRAS-mutant lung adenocarcinoma. Cancer Res. 79, 3251-3267. https://doi.org/10.1158/0008-5472.CAN-18-3527
  31. Gao, X., Deeb, D., Liu, Y., Liu, P., Zhang, Y., Shaw, J., and Gautam, S.C. (2015). CDDO-Me inhibits tumor growth and prevents recurrence of pancreatic ductal adenocarcinoma. Int. J. Oncol. 47, 2100-2106. https://doi.org/10.3892/ijo.2015.3212
  32. el Ghissassi, F., Baan, R., Straif, K., Grosse, Y., Secretan, B., Bouvard, V., Benbrahim-Tallaa, L., Guha, N., Freeman, C., Galichet, L., et al. (2009). A review of human carcinogens--part D: radiation. Lancet Oncol. 10, 751-752. https://doi.org/10.1016/S1470-2045(09)70213-X
  33. Giordano, A. and Tommonaro, G. (2019). Curcumin and cancer. Nutrients 11, 2376.
  34. Giudice, A., Aliberti, S.M., Barbieri, A., Pentangelo, P., Bisogno, I., D'Arena, G., Cianciola, E., Caraglia, M., and Capunzo, M. (2022). Potential mechanisms by which glucocorticoids induce breast carcinogenesis through Nrf2 inhibition. Front. Biosci. (Landmark Ed.) 27, 223.
  35. Greaves, M. and Maley, C.C. (2012). Clonal evolution in cancer. Nature 481, 306-313. https://doi.org/10.1038/nature10762
  36. Grizzi, F., di Ieva, A., Russo, C., Frezza, E.E., Cobos, E., Muzzio, P.C., and Chiriva-Internati, M. (2006). Cancer initiation and progression: an unsimplifiable complexity. Theor. Biol. Med. Model. 3, 37.
  37. Grosse, Y., Baan, R., Straif, K., Secretan, B., el Ghissassi, F., Bouvard, V., Benbrahim-Tallaa, L., Guha, N., Galichet, L., and Cogliano, V. (2009). A review of human carcinogens-part A: pharmaceuticals. Lancet Oncol. 10, 13-14. https://doi.org/10.1016/S1470-2045(08)70286-9
  38. Gupta, P.B., Pastushenko, I., Skibinski, A., Blanpain, C., and Kuperwasser, C. (2019). Phenotypic plasticity: driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell 24, 65-78. https://doi.org/10.1016/j.stem.2018.11.011
  39. Hamad, S.H., Montgomery, S.A., Simon, J.M., Bowman, B.M., Spainhower, K.B., Murphy, R.M., Knudsen, E.S., Fenton, S.E., Randell, S.H., Holt, J.R., et al. (2022). TP53, CDKN2A/P16, and NFE2L2/NRF2 regulate the incidence of pure- and combined-small cell lung cancer in mice. Oncogene 41, 3423-3432. https://doi.org/10.1038/s41388-022-02348-0
  40. Hamada, S., Matsumoto, R., Tanaka, Y., Taguchi, K., Yamamoto, M., and Masamune, A. (2021). Nrf2 activation sensitizes K-ras mutant pancreatic cancer cells to glutaminase inhibition. Int. J. Mol. Sci. 22, 1870.
  41. Hanahan, D. (2022). Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31-46. https://doi.org/10.1158/2159-8290.CD-21-1059
  42. Hao, Q., Wang, M., Sun, N.X., Zhu, C., Lin, Y.M., Li, C., Liu, F., and Zhu, W.W. (2020). Sulforaphane suppresses carcinogenesis of colorectal cancer through the ERK/Nrf2‑UDP glucuronosyltransferase 1A metabolic axis activation. Oncol. Rep. 43, 1067-1080. https://doi.org/10.3892/or.2020.7495
  43. He, F., Antonucci, L., and Karin, M. (2020). NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis 41, 405-416. https://doi.org/10.1093/carcin/bgaa039
  44. Hou, Z., Lockwood, L., Zhang, D., Occhiuto, C.J., Mo, L., Aldrich, K.E., Stoub, H.E., Gallo, K.A., Liby, K.T., and Odom, A.L. (2023). Exploring structural effects in a new class of NRF2 inhibitors. RSC Med. Chem. 14, 74-84. https://doi.org/10.1039/D2MD00211F
  45. Huang, Y., Yang, Y., Xu, Y., Ma, Q., Guo, F., Zhao, Y., Tao, Y., Li, M., and Guo, J. (2021). Nrf2/HO-1 axis regulates the angiogenesis of gastric cancer via targeting VEGF. Cancer Manag. Res. 13, 3155-3169. https://doi.org/10.2147/CMAR.S292461
  46. Jeddi, F., Soozangar, N., Sadeghi, M.R., Somi, M.H., Shirmohamadi, M., Eftekhar-Sadat, A.T., and Samadi, N. (2018). Nrf2 overexpression is associated with P-glycoprotein upregulation in gastric cancer. Biomed. Pharmacother. 97, 286-292. https://doi.org/10.1016/j.biopha.2017.10.129
  47. Jessen, C., Kress, J.K.C., Baluapuri, A., Hufnagel, A., Schmitz, W., Kneitz, S., Roth, S., Marquardt, A., Appenzeller, S., Ade, C.P., et al. (2020). The transcription factor NRF2 enhances melanoma malignancy by blocking differentiation and inducing COX2 expression. Oncogene 39, 6841-6855. https://doi.org/10.1038/s41388-020-01477-8
  48. Ji, X., Wang, H., Zhu, J., Zhu, L., Pan, H., Li, W., Zhou, Y., Cong, Z., Yan, F., and Chen, S. (2014). Knockdown of Nrf2 suppresses glioblastoma angiogenesis by inhibiting hypoxia-induced activation of HIF-1α. Int. J. Cancer 135, 574-584. https://doi.org/10.1002/ijc.28699
  49. Jin, M., Wang, J., Ji, X., Cao, H., Zhu, J., Chen, Y., Yang, J., Zhao, Z., Ren, T., and Xing, J. (2019). MCUR1 facilitates epithelial-mesenchymal transition and metastasis via the mitochondrial calcium dependent ROS/Nrf2/Notch pathway in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 38, 136.
  50. Kamble, D., Mahajan, M., Dhat, R., and Sitasawad, S. (2021). Keap1-Nrf2 pathway regulates ALDH and contributes to radioresistance in breast cancer stem cells. Cells 10, 83.
  51. Karunatilleke, N.C., Fast, C.S., Ngo, V., Brickenden, A., Duennwald, M.L., Konermann, L., and Choy, W.Y. (2021). Nrf2, the major regulator of the cellular oxidative stress response, is partially disordered. Int. J. Mol. Sci. 22, 7434.
  52. Kavian, N., Mehlal, S., Jeljeli, M., Saidu, N.E.B., Nicco, C., Cerles, O., Chouzenoux, S., Cauvet, A., Camus, C., Ait-Djoudi, M., et al. (2018). The Nrf2-antioxidant response element signaling pathway controls fibrosis and autoimmunity in scleroderma. Front. Immunol. 9, 1896.
  53. Kim, E.H., Deng, C., Sporn, M.B., Royce, D.B., Risingsong, R., Williams, C.R., and Liby, K.T. (2012). CDDO-Methyl ester delays breast cancer development in BRCA1-mutated mice. Cancer Prev. Res. (Phila.) 5, 89-97. https://doi.org/10.1158/1940-6207.CAPR-11-0359
  54. Kim, J.E., You, D.J., Lee, C., Ahn, C., Seong, J.Y., and Hwang, J.I. (2010). Suppression of NF-kappaB signaling by KEAP1 regulation of IKKbeta activity through autophagic degradation and inhibition of phosphorylation. Cell. Signal. 22, 1645-1654. https://doi.org/10.1016/j.cellsig.2010.06.004
  55. Kitamura, H., Onodera, Y., Murakami, S., Suzuki, T., and Motohashi, H. (2017). IL-11 contribution to tumorigenesis in an NRF2 addiction cancer model. Oncogene 36, 6315-6324. https://doi.org/10.1038/onc.2017.236
  56. Klaunig, J.E., Xu, Y., Isenberg, J.S., Bachowski, S., Kolaja, K.L., Jiang, J., Stevenson, D.E., and Walborg, E.F. (1998). The role of oxidative stress in chemical carcinogenesis. Environ. Health Perspect. 106(Suppl 1), 289-295.
  57. Ko, E., Kim, D., Min, D.W., Kwon, S.H., and Lee, J.Y. (2021). Nrf2 regulates cell motility through RhoA-ROCK1 signalling in non-small-cell lung cancer cells. Sci. Rep. 11, 1247.
  58. Kobayashi, E.H., Suzuki, T., Funayama, R., Nagashima, T., Hayashi, M., Sekine, H., Tanaka, N., Moriguchi, T., Motohashi, H., Nakayama, K., et al. (2016). Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 7, 11624.
  59. Koppula, P., Lei, G., Zhang, Y., Yan, Y., Mao, C., Kondiparthi, L., Shi, J., Liu, X., Horbath, A., Das, M., et al. (2022). A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. Nat. Commun. 13, 2206.
  60. Kwak, M.K., Wakabayashi, N., Itoh, K., Motohashi, H., Yamamoto, M., and Kensler, T.W. (2003). Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. J. Biol. Chem. 278, 8135-8145. https://doi.org/10.1074/jbc.M211898200
  61. Lee, D.F., Kuo, H.P., Liu, M., Chou, C.K., Xia, W., Du, Y., Shen, J., Chen, C.T., Huo, L., Hsu, M.C., et al. (2009). KEAP1 E3 ligase-mediated downregulation of NF-κB signaling by targeting IKKβ. Mol. Cell 36, 131-140. https://doi.org/10.1016/j.molcel.2009.07.025
  62. Lee, J.M., Calkins, M.J., Chan, K., Kan, Y.W., and Johnson, J.A. (2003). Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J. Biol. Chem. 278, 12029-12038. https://doi.org/10.1074/jbc.M211558200
  63. Lee, J.S. and Surh, Y.J. (2005). Nrf2 as a novel molecular target for chemoprevention. Cancer Lett. 224, 171-184. https://doi.org/10.1016/j.canlet.2004.09.042
  64. Liby, K., Risingsong, R., Royce, D.B., Williams, C.R., Yore, M.M., Honda, T., Gribble, G.W., Lamph, W.W., Vannini, N., Sogno, I., et al. (2008). Prevention and treatment of experimental estrogen receptor - negative mammary carcinogenesis by the synthetic triterpenoid CDDO-methyl ester and the rexinoid LG100268. Clin. Cancer Res. 14, 4556-4563. https://doi.org/10.1158/1078-0432.CCR-08-0040
  65. Liby, K., Royce, D.B., Williams, C.R., Risingsong, R., Yore, M.M., Honda, T., Gribble, G.W., Dmitrovsky, E., Sporn, T.A., and Sporn, M.B. (2007). The synthetic triterpenoids CDDO-methyl ester and CDDO-ethyl amide prevent lung cancer induced by vinyl carbamate in A/J mice. Cancer Res. 67, 2414-2419. https://doi.org/10.1158/0008-5472.CAN-06-4534
  66. Lignitto, L., LeBoeuf, S.E., Homer, H., Jiang, S., Askenazi, M., Karakousi, T.R., Pass, H.I., Bhutkar, A.J., Tsirigos, A., Ueberheide, B., et al. (2019). Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell 178, 316-329.e18. https://doi.org/10.1016/j.cell.2019.06.003
  67. Lim, J.K.M. and Leprivier, G. (2019). The impact of oncogenic RAS on redox balance and implications for cancer development. Cell Death Dis. 10, 955.
  68. Liu, N., Lin, X., and Huang, C. (2020). Activation of the reverse transsulfuration pathway through NRF2/CBS confers erastin-induced ferroptosis resistance. Br. J. Cancer 122, 279-292. https://doi.org/10.1038/s41416-019-0660-x
  69. Liu, Q., Zhao, S., Meng, F., Wang, H., Sun, L., Li, G., Gao, F., and Chen, F. (2021). Nrf2 down-regulation by camptothecin favors inhibiting invasion, metastasis and angiogenesis in hepatocellular carcinoma. Front. Oncol. 11, 661157.
  70. Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A., and Dulak, J. (2016). Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell. Mol. Life Sci. 73, 3221-3247. https://doi.org/10.1007/s00018-016-2223-0
  71. Mansouri, K., Rasoulpoor, S., Daneshkhah, A., Abolfathi, S., Salari, N., Mohammadi, M., Rasoulpoor, S., and Shabani, S. (2020). Clinical effects of curcumin in enhancing cancer therapy: a systematic review. BMC Cancer 20, 791.
  72. Matsuoka, Y., Yoshida, R., Kawahara, K., Sakata, J., Arita, H., Nkashima, H., Takahashi, N., Hirayama, M., Nagata, M., Hirosue, A., et al. (2022). The antioxidative stress regulator Nrf2 potentiates radioresistance of oral squamous cell carcinoma accompanied with metabolic modulation. Lab. Invest. 102, 896-907. https://doi.org/10.1038/s41374-022-00776-w
  73. McCreery, M.Q. and Balmain, A. (2017). Chemical carcinogenesis models of cancer: back to the future. Annu. Rev. Cancer Biol. 1, 295-312. https://doi.org/10.1146/annurev-cancerbio-050216-122002
  74. Mukaigasa, K., Nguyen, L.T.P., Li, L., Nakajima, H., Yamamoto, M., and Kobayashi, M. (2012). Genetic evidence of an evolutionarily conserved role for Nrf2 in the protection against oxidative stress. Mol. Cell. Biol. 32, 4455-4461. https://doi.org/10.1128/MCB.00481-12
  75. Murray, J.R., de La Vega, L., Hayes, J.D., Duan, L., and Penning, T.M. (2019). Induction of the antioxidant response by the transcription factor NRF2 increases bioactivation of the mutagenic air pollutant 3-nitrobenzanthrone in human lung cells. Chem. Res. Toxicol. 32, 2538-2551. https://doi.org/10.1021/acs.chemrestox.9b00399
  76. Naugler, W.E. and Karin, M. (2008). NF-kappaB and cancer-identifying targets and mechanisms. Curr. Opin. Genet. Dev. 18, 19-26. https://doi.org/10.1016/j.gde.2008.01.020
  77. Nishizawa, H., Yamanaka, M., and Igarashi, K. (2022). Ferroptosis: regulation by competition between NRF2 and BACH1 and propagation of the death signal. FEBS J. 2022 Feb 2 [Epub]. https://doi.org/10.1111/febs.16382
  78. Niture, S.K. and Jaiswal, A.K. (2012). Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis. J. Biol. Chem. 287, 9873-9886. https://doi.org/10.1074/jbc.M111.312694
  79. Noh, J.K., Woo, S.R., Yun, M., Lee, M.K., Kong, M., Min, S., Kim, S.I., Lee, Y.C., Eun, Y.G., and Ko, S.G. (2021). SOD2- and NRF2-associated gene signature to predict radioresistance in head and neck cancer. Cancer Genomics Proteomics 18, 675-684. https://doi.org/10.21873/cgp.20289
  80. Nowell, P.C. (1976). The clonal evolution of tumor cell populations. Science 194, 23-28. https://doi.org/10.1126/science.959840
  81. Okazaki, K., Anzawa, H., Liu, Z., Ota, N., Kitamura, H., Onodera, Y., Alam, M.M., Matsumaru, D., Suzuki, T., Katsuoka, F., et al. (2020). Enhancer remodeling promotes tumor-initiating activity in NRF2-activated non-small cell lung cancers. Nat. Commun. 11, 5911.
  82. Pan, H., Wang, H., Wang, X., Zhu, L., and Mao, L. (2012). The absence of Nrf2 enhances NF-κB-dependent inflammation following scratch injury in mouse primary cultured astrocytes. Mediators Inflamm. 2012, 217580.
  83. Pillai, R., Hayashi, M., Zavitsanou, A.M., and Papagiannakopoulos, T. (2022). NRF2: KEAPing tumors protected. Cancer Discov. 12, 625-643. https://doi.org/10.1158/2159-8290.CD-21-0922
  84. Polonen, P., Jawahar Deen, A., Leinonen, H.M., Jyrkkanen, H.K., Kuosmanen, S., Mononen, M., Jain, A., Tuomainen, T., Pasonen-Seppanen, S., Hartikainen, J.M., et al. (2019). Nrf2 and SQSTM1/p62 jointly contribute to mesenchymal transition and invasion in glioblastoma. Oncogene 38, 7473-7490. https://doi.org/10.1038/s41388-019-0956-6
  85. Pouremamali, F., Pouremamali, A., Dadashpour, M., Soozangar, N., and Jeddi, F. (2022). An update of Nrf2 activators and inhibitors in cancer prevention/promotion. Cell Commun. Signal. 20, 100.
  86. Purohit, V., Wang, L., Yang, H., Li, J., Ney, G.M., Gumkowski, E.R., Vaidya, A.J., Wang, A., Bhardwaj, A., Zhao, E., et al. (2021). ATDC binds to KEAP1 to drive NRF2-mediated tumorigenesis and chemoresistance in pancreatic cancer. Genes Dev. 35, 218-233. https://doi.org/10.1101/gad.344184.120
  87. Qiu, P., Hou, W., Wang, H., Lei, K.K.W., Wang, S., Chen, W., Pardeshi, L.A., Prothro, K., Shukla, Y., Su, S.S.M., et al. (2021). Sirt1 deficiency upregulates glutathione metabolism to prevent hepatocellular carcinoma initiation in mice. Oncogene 40, 6023-6033. https://doi.org/10.1038/s41388-021-01993-1
  88. Ramos-Gomez, M., Kwak, M.K., Dolan, P.M., Itoh, K., Yamamoto, M., Talalay, P., and Kensler, T.W. (2001). Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 98, 3410-3415. https://doi.org/10.1073/pnas.051618798
  89. Rial, N.S., Choi, K., Nguyen, T., Snyder, B., and Slepian, M.J. (2012). Nuclear factor kappa B (NF-κB): a novel cause for diabetes, coronary artery disease and cancer initiation and promotion? Med. Hypotheses 78, 29-32. https://doi.org/10.1016/j.mehy.2011.09.034
  90. Riis, S., Murray, J.B., and O'Connor, R. (2020). IGF-1 signalling regulates mitochondria dynamics and turnover through a conserved GSK-3β-Nrf2-BNIP3 pathway. Cells 9, 147.
  91. Robertson, H., Dinkova-Kostova, A.T., and Hayes, J.D. (2020). NRF2 and the ambiguous consequences of its activation during initiation and the subsequent stages of tumourigenesis. Cancers (Basel) 12, 3609.
  92. Robledinos-Anton, N., Fernandez-Gines, R., Manda, G., and Cuadrado, A. (2019). Activators and inhibitors of NRF2: a review of their potential for clinical development. Oxid. Med. Cell. Longev. 2019, 9372182.
  93. Rojo de la Vega, M., Chapman, E., and Zhang, D.D. (2018). NRF2 and the hallmarks of cancer. Cancer Cell 34, 21-43. https://doi.org/10.1016/j.ccell.2018.03.022
  94. Romani, P., Nirchio, N., Arboit, M., Barbieri, V., Tosi, A., Michielin, F., Shibuya, S., Benoist, T., Wu, D., Hindmarch, C.C.T., et al. (2022). Mitochondrial fission links ECM mechanotransduction to metabolic redox homeostasis and metastatic chemotherapy resistance. Nat. Cell Biol. 24, 168-180. https://doi.org/10.1038/s41556-022-00843-w
  95. Ryan, D.G., Knatko, E.V., Casey, A.M., Hukelmann, J.L., Dayalan Naidu, S., Brenes, A.J., Ekkunagul, T., Baker, C., Higgins, M., Tronci, L., et al. (2022). Nrf2 activation reprograms macrophage intermediary metabolism and suppresses the type I interferon response. iScience 25, 103827.
  96. Sabharwal, S.S. and Schumacker, P.T. (2014). Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel? Nat. Rev. Cancer 14, 709-721. https://doi.org/10.1038/nrc3803
  97. Sanghvi, V.R., Leibold, J., Mina, M., Mohan, P., Berishaj, M., Li, Z., Miele, M.M., Lailler, N., Zhao, C., de Stanchina, E., et al. (2019). The oncogenic action of NRF2 depends on de-glycation by fructosamine-3-kinase. Cell 178, 807-819.e21. https://doi.org/10.1016/j.cell.2019.07.031
  98. Satoh, H., Moriguchi, T., Takai, J., Ebina, M., and Yamamoto, M. (2013). Nrf2 prevents initiation but accelerates progression through the Kras signaling pathway during lung carcinogenesis. Cancer Res. 73, 4158-4168. https://doi.org/10.1158/0008-5472.CAN-12-4499
  99. Schaue, D., Micewicz, E.D., Ratikan, J.A., Iwamoto, K.S., Vlashi, E., McDonald, J.T., and McBride, W.H. (2022). NRF2 mediates cellular resistance to transformation, radiation, and inflammation in mice. Antioxidants (Basel) 11, 1649.
  100. Schimrigk, S., Brune, N., Hellwig, K., Lukas, C., Bellenberg, B., Rieks, M., Hoffmann, V., Pohlau, D., and Przuntek, H. (2006). Oral fumaric acid esters for the treatment of active multiple sclerosis: an open-label, baseline-controlled pilot study. Eur. J. Neurol. 13, 604-610. https://doi.org/10.1111/j.1468-1331.2006.01292.x
  101. Schmidlin, C.J., Shakya, A., Dodson, M., Chapman, E., and Zhang, D.D. (2021). The intricacies of NRF2 regulation in cancer. Semin. Cancer Biol. 76, 110-119. https://doi.org/10.1016/j.semcancer.2021.05.016
  102. Shahcheraghi, S.H., Salemi, F., Alam, W., Ashworth, H., Saso, L., Khan, H., and Lotfi, M. (2022). The role of NRF2/KEAP1 pathway in glioblastoma: pharmacological implications. Med. Oncol. 39, 91.
  103. Silva, M.M., Rocha, C.R.R., Kinker, G.S., Pelegrini, A.L., and Menck, C.F.M. (2019). The balance between NRF2/GSH antioxidant mediated pathway and DNA repair modulates cisplatin resistance in lung cancer cells. Sci. Rep. 9, 17639.
  104. Simov, V., Altman, M.D., Bianchi, E., DelRizzo, S., DiNunzio, E.N., Feng, G., Goldenblatt, P., Ingenito, R., Johnson, S.A., Mansueto, M.S., et al. (2021). Discovery and characterization of novel peptide inhibitors of the NRF2/MAFG/DNA ternary complex for the treatment of cancer. Eur. J. Med. Chem. 224, 113686.
  105. Singh, A., Daemen, A., Nickles, D., Jeon, S.M., Foreman, O., Sudini, K., Gnad, F., Lajoie, S., Gour, N., Mitzner, W., et al. (2021). NRF2 activation promotes aggressive lung cancer and associates with poor clinical outcomes. Clin. Cancer Res. 27, 877-888. https://doi.org/10.1158/1078-0432.CCR-20-1985
  106. Singh, B., Shoulson, R., Chatterjee, A., Ronghe, A., Bhat, N.K., Dim, D.C., and Bhat, H.K. (2014). Resveratrol inhibits estrogen-induced breast carcinogenesis through induction of NRF2-mediated protective pathways. Carcinogenesis 35, 1872-1880. https://doi.org/10.1093/carcin/bgu120
  107. Son, Y., Kim, S., Chung, H.T., and Pae, H.O. (2013). Reactive oxygen species in the activation of MAP kinases. Methods Enzymol. 528, 27-48. https://doi.org/10.1016/B978-0-12-405881-1.00002-1
  108. Sotgia, F., Martinez-Outschoorn, U.E., and Lisanti, M.P. (2011). Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention? BMC Med. 9, 62.
  109. Sporn, M.B. and Liby, K.T. (2012). NRF2 and cancer: the good, the bad and the importance of context. Nat. Rev. Cancer 12, 564-571. https://doi.org/10.1038/nrc3278
  110. Srivastava, R., Fernandez-Gines, R., Encinar, J.A., Cuadrado, A., and Wells, G. (2022). The current status and future prospects for therapeutic targeting of KEAP1-NRF2 and β-TrCP-NRF2 interactions in cancer chemoresistance. Free Radic. Biol. Med. 192, 246-260. https://doi.org/10.1016/j.freeradbiomed.2022.09.023
  111. Straif, K., Benbrahim-Tallaa, L., Baan, R., Grosse, Y., Secretan, B., el Ghissassi, F., Bouvard, V., Guha, N., Freeman, C., Galichet, L., et al. (2009). A review of human carcinogens--part C: metals, arsenic, dusts, and fibres. Lancet Oncol. 10, 453-454. https://doi.org/10.1016/S1470-2045(09)70134-2
  112. Su, H., Yang, F., Fu, R., Li, X., French, R., Mose, E., Pu, X., Trinh, B., Kumar, A., Liu, J., et al. (2021). Cancer cells escape autophagy inhibition via NRF2 induced macropinocytosis. Cancer Cell 39, 678-693.e11. https://doi.org/10.1016/j.ccell.2021.02.016
  113. Suzuki, T., Murakami, S., Biswal, S.S., Sakaguchi, S., Harigae, H., Yamamoto, M., and Motohashi, H. (2017). Systemic activation of NRF2 alleviates lethal autoimmune inflammation in scurfy mice. Mol. Cell. Biol. 37, e00063-17.
  114. Taguchi, K. and Yamamoto, M. (2017). The KEAP1-NRF2 system in cancer. Front. Oncol. 7, 85.
  115. Taniguchi, S., Elhance, A., van Duzer, A., Kumar, S., Leitenberger, J.J., and Oshimori, N. (2020). Tumor-initiating cells establish an IL-33-TGF-β niche signaling loop to promote cancer progression. Science 369, eaay1813.
  116. Tao, S., Rojo de la Vega, M., Chapman, E., Ooi, A., and Zhang, D.D. (2018). The effects of NRF2 modulation on the initiation and progression of chemically and genetically induced lung cancer. Mol. Carcinog. 57, 182-192. https://doi.org/10.1002/mc.22745
  117. Thimmulappa, R.K., Lee, H., Rangasamy, T., Reddy, S.P., Yamamoto, M., Kensler, T.W., and Biswal, S. (2006). Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J. Clin. Invest. 116, 984-995. https://doi.org/10.1172/JCI25790
  118. Tonelli, C., Chio, I.I.C., and Tuveson, D.A. (2018). Transcriptional regulation by Nrf2. Antioxid. Redox Signal. 29, 1727-1745. https://doi.org/10.1089/ars.2017.7342
  119. Toth, R.K. and Warfel, N.A. (2017). Strange bedfellows: nuclear factor, erythroid 2-like 2 (Nrf2) and hypoxia-inducible factor 1 (HIF-1) in tumor hypoxia. Antioxidants (Basel) 6, 27.
  120. Towers, C.G., Fitzwalter, B.E., Regan, D., Goodspeed, A., Morgan, M.J., Liu, C.W., Gustafson, D.L., and Thorburn, A. (2019). Cancer cells upregulate NRF2 signaling to adapt to autophagy inhibition. Dev. Cell 50, 690-703.e6. https://doi.org/10.1016/j.devcel.2019.07.010
  121. Toyokuni, S., Kong, Y., Cheng, Z., Sato, K., Hayashi, S., Ito, F., Jiang, L., Yanatori, I., Okazaki, Y., and Akatsuka, S. (2020). Carcinogenesis as side effects of iron and oxygen utilization: from the unveiled truth toward ultimate bioengineering. Cancers (Basel) 12, 3320.
  122. Tran, K., Risingsong, R., Royce, D., Williams, C.R., Sporn, M.B., and Liby, K. (2012). The synthetic triterpenoid CDDO-methyl ester delays estrogen receptor-negative mammary carcinogenesis in polyoma middle T mice. Cancer Prev. Res. (Phila.) 5, 726-734. https://doi.org/10.1158/1940-6207.CAPR-11-0404
  123. Vafa, O., Wade, M., Kern, S., Beeche, M., Pandita, T.K., Hampton, G.M., and Wahl, G.M. (2002). c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol. Cell 9, 1031-1044. https://doi.org/10.1016/S1097-2765(02)00520-8
  124. Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M., and Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160, 1-40. https://doi.org/10.1016/j.cbi.2005.12.009
  125. Vartanian, S., Lee, J., Klijn, C., Gnad, F., Bagniewska, M., Schaefer, G., Zhang, D., Tan, J., Watson, S.A., Liu, L., et al. (2019). ERBB3 and IGF1R signaling are required for Nrf2-dependent growth in KEAP1-mutant lung cancer. Cancer Res. 79, 4828-4839. https://doi.org/10.1158/0008-5472.CAN-18-2086
  126. del Vecchio, C.A., Feng, Y., Sokol, E.S., Tillman, E.J., Sanduja, S., Reinhardt, F., and Gupta, P.B. (2014). De-differentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling. PLoS Biol. 12, e1001945.
  127. Wakabayashi, N., Itoh, K., Wakabayashi, J., Motohashi, H., Noda, S., Takahashi, S., Imakado, S., Kotsuji, T., Otsuka, F., Roop, D.R., et al. (2003). Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat. Genet. 35, 238-245. https://doi.org/10.1038/ng1248
  128. Wang, F., Zhang, Y., Shen, J., Yang, B., Dai, W., Yan, J., Maimouni, S., Daguplo, H.Q., Coppola, S., Gao, Y., et al. (2021). The ubiquitin E3 ligase TRIM21 promotes hepatocarcinogenesis by suppressing the p62-Keap1-Nrf2 antioxidant pathway. Cell. Mol. Gastroenterol. Hepatol. 11, 1369-1385. https://doi.org/10.1016/j.jcmgh.2021.01.007
  129. Wang, L., Bayanbold, K., Zhao, L., Wang, Y., Adamcakova-Dodd, A., Thorne, P.S., Yang, H., Jiang, B.H., and Liu, L.Z. (2022a). Redox sensitive miR-27a/b/Nrf2 signaling in Cr(VI)-induced carcinogenesis. Sci. Total Environ. 809, 151118.
  130. Wang, P., Long, F., Lin, H., and Wang, T. (2022b). Dietary phytochemicals targeting Nrf2 for chemoprevention in breast cancer. Food Funct. 13, 4273-4285. https://doi.org/10.1039/D2FO00186A
  131. Wang, Y., Mandal, A.K., Son, Y.O., Pratheeshkumar, P., Wise, J.T.F., Wang, L., Zhang, Z., Shi, X., and Chen, Z. (2018). Roles of ROS, Nrf2, and autophagy in cadmium-carcinogenesis and its prevention by sulforaphane. Toxicol. Appl. Pharmacol. 353, 23-30. https://doi.org/10.1016/j.taap.2018.06.003
  132. Wardyn, J.D., Ponsford, A.H., and Sanderson, C.M. (2015). Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem. Soc. Trans. 43, 621-626. https://doi.org/10.1042/BST20150014
  133. Waris, G. and Ahsan, H. (2006). Reactive oxygen species: role in the development of cancer and various chronic conditions. J. Carcinog. 5, 14.
  134. Weinberg, R.A. (2014) The Biology of Cancer, 2nd Edition (New York: W. W. Norton & Company).
  135. Wiel, C., le Gal, K., Ibrahim, M.X., Jahangir, C.A., Kashif, M., Yao, H., Ziegler, D.V., Xu, X., Ghosh, T., Mondal, T., et al. (2019). BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell 178, 330-345.e22. https://doi.org/10.1016/j.cell.2019.06.005
  136. Worsley, C.M., Mayne, E.S., and Veale, R.B. (2016). Clone wars: the evolution of therapeutic resistance in cancer. Evol. Med. Public Health 2016, 180-181. https://doi.org/10.1093/emph/eow015
  137. Wu, S., Lu, H., and Bai, Y. (2019). Nrf2 in cancers: a double-edged sword. Cancer Med. 8, 2252-2267. https://doi.org/10.1002/cam4.2101
  138. Xie, W., Tan, B., Yang, Z., Yu, X., Chen, L., Ran, D., Xu, Q., and Zhou, X. (2020). Nrf2/ARE pathway activation is involved in negatively regulating heat-induced apoptosis in non-small cell lung cancer cells. Acta Biochim. Biophys. Sin. (Shanghai) 52, 439-445. https://doi.org/10.1093/abbs/gmaa013
  139. Yagishita, Y., Gatbonton-Schwager, T.N., McCallum, M.L., and Kensler, T.W. (2020). Current landscape of NRF2 biomarkers in clinical trials. Antioxidants (Basel) 9, 716.
  140. Yang, J., Wu, R., Li, W., Gao, L., Yang, Y., Li, P., and Kong, A.N. (2018a). The triterpenoid corosolic acid blocks transformation and epigenetically reactivates Nrf2 in TRAMP-C1 prostate cells. Mol. Carcinog. 57, 512-521. https://doi.org/10.1002/mc.22776
  141. Yang, Y., Yang, I., Cao, M., Su, Z.Y., Wu, R., Guo, Y., Fang, M., and Kong, A.N. (2018b). Fucoxanthin elicits epigenetic modifications, Nrf2 activation and blocking transformation in mouse skin JB6 P+ cells. AAPS J. 20, 32.
  142. Zhang, D., Hou, Z., Aldrich, K.E., Lockwood, L., Odom, A.L., and Liby, K.T. (2021). A novel Nrf2 pathway inhibitor sensitizes Keap1-mutant lung cancer cells to chemotherapy. Mol. Cancer Ther. 20, 1692-1701. https://doi.org/10.1158/1535-7163.MCT-21-0210
  143. Zhang, D., Rennhack, J., Andrechek, E.R., Rockwell, C.E., and Liby, K.T. (2018). Identification of an unfavorable immune signature in advanced lung tumors from Nrf2-deficient mice. Antioxid. Redox Signal. 29, 1535-1552. https://doi.org/10.1089/ars.2017.7201
  144. Zhang, H.S., Zhang, Z.G., Du, G.Y., Sun, H.L., Liu, H.Y., Zhou, Z., Gou, X.M., Wu, X.H., Yu, X.Y., and Huang, Y.H. (2019). Nrf2 promotes breast cancer cell migration via up-regulation of G6PD/HIF-1α/Notch1 axis. J. Cell. Mol. Med. 23, 3451-3463. https://doi.org/10.1111/jcmm.14241
  145. Zhang, Y. and Gordon, G.B. (2004). A strategy for cancer prevention: stimulation of the Nrf2-ARE signaling pathway. Mol. Cancer Ther. 3, 885-893. https://doi.org/10.1158/1535-7163.885.3.7
  146. Zheng, J., Kim, S.J., Saeidi, S., Kim, S.H., Fang, X., Lee, Y.H., Guillen-Quispe, Y.N., Ngo, H.K.C., Kim, D.H., Kim, D., et al. (2023). Overactivated NRF2 induces pseudohypoxia in hepatocellular carcinoma by stabilizing HIF-1α. Free Radic. Biol. Med. 194, 347-356. https://doi.org/10.1016/j.freeradbiomed.2022.11.039
  147. Zhou, J., Li, X.Y., Liu, Y.J., Feng, J., Wu, Y., Shen, H.M., and Lu, G.D. (2022). Full-coverage regulations of autophagy by ROS: from induction to maturation. Autophagy 18, 1240-1255. https://doi.org/10.1080/15548627.2021.1984656
  148. Zhou, X.L., Zhu, C.Y., Wu, Z.G., Guo, X., and Zou, W. (2019). The oncoprotein HBXIP competitively binds KEAP1 to activate NRF2 and enhance breast cancer cell growth and metastasis. Oncogene 38, 4028-4046. https://doi.org/10.1038/s41388-019-0698-5
  149. Zimta, A.A., Cenariu, D., Irimie, A., Magdo, L., Nabavi, S.M., Atanasov, A.G., and Berindan-Neagoe, I. (2019). The role of Nrf2 activity in cancer development and progression. Cancers (Basel) 11, 1755.
  150. Zuo, Q., Wu, R., Xiao, X., Yang, C., Yang, Y., Wang, C., Lin, L., and Kong, A.N. (2018). The dietary flavone luteolin epigenetically activates the Nrf2 pathway and blocks cell transformation in human colorectal cancer HCT116 cells. J. Cell. Biochem. 119, 9573-9582. https://doi.org/10.1002/jcb.27275