DOI QR코드

DOI QR Code

Anti-Ferroptotic Effects of Nrf2: Beyond the Antioxidant Response

  • Aryatara Shakya (Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona) ;
  • Nicholas W. McKee (Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona) ;
  • Matthew Dodson (Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona) ;
  • Eli Chapman (Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona) ;
  • Donna D. Zhang (Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona)
  • 투고 : 2023.01.02
  • 심사 : 2023.02.09
  • 발행 : 2023.03.31

초록

The transcription factor Nrf2 was originally identified as a master regulator of redox homeostasis, as it governs the expression of a battery of genes involved in mitigating oxidative and electrophilic stress. However, the central role of Nrf2 in dictating multiple facets of the cellular stress response has defined the Nrf2 pathway as a general mediator of cell survival. Recent studies have indicated that Nrf2 regulates the expression of genes controlling ferroptosis, an iron-and lipid peroxidation-dependent form of cell death. While Nrf2 was initially thought to have anti-ferroptotic function primarily through regulation of the antioxidant response, accumulating evidence has indicated that Nrf2 also exerts anti-ferroptotic effects via regulation of key aspects of iron and lipid metabolism. In this review, we will explore the emerging role of Nrf2 in mediating iron homeostasis and lipid peroxidation, where several Nrf2 target genes have been identified that encode critical proteins involved in these pathways. A better understanding of the mechanistic relationship between Nrf2 and ferroptosis, including how genetic and/or pharmacological manipulation of Nrf2 affect the ferroptotic response, should facilitate the development of new therapies that can be used to treat ferroptosis-associated diseases.

키워드

과제정보

D.D.Z. is supported by the following grants from the National Institutes of Health: R35ES031575 and P42ES004940.

참고문헌

  1. A, A., W, C., N, N., L, M., M, D., and Zhang, D.D. (2022). alpha-Syn overexpression, NRF2 suppression, and enhanced ferroptosis create a vicious cycle of neuronal loss in Parkinson's disease. Free Radic. Biol. Med. 192, 130-140. https://doi.org/10.1016/j.freeradbiomed.2022.09.015
  2. Abrams, R.P., Carroll, W.L., and Woerpel, K.A. (2016). Five-membered ring peroxide selectively initiates ferroptosis in cancer cells. ACS Chem. Biol. 11, 1305-1312. https://doi.org/10.1021/acschembio.5b00900
  3. Adedoyin, O., Boddu, R., Traylor, A., Lever, J.M., Bolisetty, S., George, J.F., and Agarwal, A. (2018). Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. Am. J. Physiol. Renal Physiol. 314, F702-F714. https://doi.org/10.1152/ajprenal.00044.2017
  4. Agyeman, A.S., Chaerkady, R., Shaw, P.G., Davidson, N.E., Visvanathan, K., Pandey, A., and Kensler, T.W. (2012). Transcriptomic and proteomic profiling of KEAP1 disrupted and sulforaphane-treated human breast epithelial cells reveals common expression profiles. Breast Cancer Res. Treat. 132, 175-187. https://doi.org/10.1007/s10549-011-1536-9
  5. Anandhan, A., Dodson, M., Shakya, A., Chen, J., Liu, P., Wei, Y., Tan, H., Wang, Q., Jiang, Z., Yang, K., et al. (2023). NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8. Sci. Adv. 9, eade9585.
  6. Ayala, A., Munoz, M.F., and Arguelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 360438.
  7. Balogun, E., Foresti, R., Green, C.J., and Motterlini, R. (2003). Changes in temperature modulate heme oxygenase-1 induction by curcumin in renal epithelial cells. Biochem. Biophys. Res. Commun. 308, 950-955. https://doi.org/10.1016/S0006-291X(03)01517-1
  8. Bersuker, K., Hendricks, J., Li, Z., Magtanong, L., Ford, B., Tang, P.H., Roberts, M.A., Tong, B., Maimone, T.J., Zoncu, R., et al. (2019). The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688-692. https://doi.org/10.1038/s41586-019-1705-2
  9. Burchiel, S.W., Thompson, T.A., Lauer, F.T., and Oprea, T.I. (2007). Activation of dioxin response element (DRE)-associated genes by benzo(a)pyrene 3,6-quinone and benzo(a)pyrene 1,6-quinone in MCF-10A human mammary epithelial cells. Toxicol. Appl. Pharmacol. 221, 203-214. https://doi.org/10.1016/j.taap.2007.02.020
  10. Campbell, M.R., Karaca, M., Adamski, K.N., Chorley, B.N., Wang, X., and Bell, D.A. (2013). Novel hematopoietic target genes in the NRF2-mediated transcriptional pathway. Oxid. Med. Cell. Longev. 2013, 120305.
  11. Chan, J.Y. and Kwong, M. (2000). Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein. Biochim. Biophys. Acta 1517, 19-26. https://doi.org/10.1016/S0167-4781(00)00238-4
  12. Chang, L.C., Chiang, S.K., Chen, S.E., Yu, Y.L., Chou, R.H., and Chang, W.C. (2018). Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis. Cancer Lett. 416, 124-137. https://doi.org/10.1016/j.canlet.2017.12.025
  13. Chen, X., Li, J., Kang, R., Klionsky, D.J., and Tang, D. (2021). Ferroptosis: machinery and regulation. Autophagy 17, 2054-2081. https://doi.org/10.1080/15548627.2020.1810918
  14. Cho, H.Y., Gladwell, W., Wang, X., Chorley, B., Bell, D., Reddy, S.P., and Kleeberger, S.R. (2010). Nrf2-regulated PPAR{gamma} expression is critical to protection against acute lung injury in mice. Am. J. Respir. Crit. Care Med. 182, 170-182. https://doi.org/10.1164/rccm.200907-1047OC
  15. Chorley, B.N., Campbell, M.R., Wang, X., Karaca, M., Sambandan, D., Bangura, F., Xue, P., Pi, J., Kleeberger, S.R., and Bell, D.A. (2012). Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha. Nucleic Acids Res. 40, 7416-7429. https://doi.org/10.1093/nar/gks409
  16. Chowdhury, I., Mo, Y., Gao, L., Kazi, A., Fisher, A.B., and Feinstein, S.I. (2009). Oxidant stress stimulates expression of the human peroxiredoxin 6 gene by a transcriptional mechanism involving an antioxidant response element. Free Radic. Biol. Med. 46, 146-153. https://doi.org/10.1016/j.freeradbiomed.2008.09.027
  17. Chu, B., Kon, N., Chen, D., Li, T., Liu, T., Jiang, L., Song, S., Tavana, O., and Gu, W. (2019). ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat. Cell Biol. 21, 579-591. https://doi.org/10.1038/s41556-019-0305-6
  18. Conrad, M., Angeli, J.P., Vandenabeele, P., and Stockwell, B.R. (2016). Regulated necrosis: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 15, 348-366. https://doi.org/10.1038/nrd.2015.6
  19. Conrad, M., Kagan, V.E., Bayir, H., Pagnussat, G.C., Head, B., Traber, M.G., and Stockwell, B.R. (2018). Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev. 32, 602-619. https://doi.org/10.1101/gad.314674.118
  20. Corenblum, M.J., Ray, S., Remley, Q.W., Long, M., Harder, B., Zhang, D.D., Barnes, C.A., and Madhavan, L. (2016). Reduced Nrf2 expression mediates the decline in neural stem cell function during a critical middle-age period. Aging Cell 15, 725-736. https://doi.org/10.1111/acel.12482
  21. Cuadrado, A., Rojo, A.I., Wells, G., Hayes, J.D., Cousin, S.P., Rumsey, W.L., Attucks, O.C., Franklin, S., Levonen, A.L., Kensler, T.W., et al. (2019). Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 18, 295-317. https://doi.org/10.1038/s41573-018-0008-x
  22. Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., Patel, D.N., Bauer, A.J., Cantley, A.M., Yang, W.S., et al. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042
  23. Dixon, S.J., Patel, D.N., Welsch, M., Skouta, R., Lee, E.D., Hayano, M., Thomas, A.G., Gleason, C.E., Tatonetti, N.P., Slusher, B.S., et al. (2014). Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 3, e02523.
  24. Dixon, S.J., Winter, G.E., Musavi, L.S., Lee, E.D., Snijder, B., Rebsamen, M., Superti-Furga, G., and Stockwell, B.R. (2015). Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol. 10, 1604-1609. https://doi.org/10.1021/acschembio.5b00245
  25. Dodson, M., de la Vega, M.R., Cholanians, A.B., Schmidlin, C.J., Chapman, E., and Zhang, D.D. (2019). Modulating NRF2 in disease: timing is everything. Annu. Rev. Pharmacol. Toxicol. 59, 555-575. https://doi.org/10.1146/annurev-pharmtox-010818-021856
  26. Doll, S., Freitas, F.P., Shah, R., Aldrovandi, M., da Silva, M.C., Ingold, I., Grocin, A.G., Xavier da Silva, T.N., Panzilius, E., Scheel, C., et al. (2019). FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693-698. https://doi.org/10.1038/s41586-019-1707-0
  27. Doll, S., Proneth, B., Tyurina, Y.Y., Panzilius, E., Kobayashi, S., Ingold, I., Irmler, M., Beckers, J., Aichler, M., Walch, A., et al. (2017). ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91-98. https://doi.org/10.1038/nchembio.2239
  28. Dolma, S., Lessnick, S.L., Hahn, W.C., and Stockwell, B.R. (2003). Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3, 285-296. https://doi.org/10.1016/S1535-6108(03)00050-3
  29. Emmanuel, N., Li, H., Chen, J., and Zhang, Y. (2022). FSP1, a novel KEAP1/NRF2 target gene regulating ferroptosis and radioresistance in lung cancers. Oncotarget 13, 1136-1139. https://doi.org/10.18632/oncotarget.28301
  30. Erickson, A.M., Nevarea, Z., Gipp, J.J., and Mulcahy, R.T. (2002). Identification of a variant antioxidant response element in the promoter of the human glutamate-cysteine ligase modifier subunit gene. Revision of the ARE consensus sequence. J. Biol. Chem. 277, 30730-30737. https://doi.org/10.1074/jbc.M205225200
  31. Fan, Z., Wirth, A.K., Chen, D., Wruck, C.J., Rauh, M., Buchfelder, M., and Savaskan, N. (2017). Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis 6, e371.
  32. Forcina, G.C. and Dixon, S.J. (2019). GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics 19, e1800311.
  33. Galluzzi, L., Vitale, I., Aaronson, S.A., Abrams, J.M., Adam, D., Agostinis, P., Alnemri, E.S., Altucci, L., Amelio, I., Andrews, D.W., et al. (2018). Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486-541. https://doi.org/10.1038/s41418-017-0012-4
  34. Harada, N., Kanayama, M., Maruyama, A., Yoshida, A., Tazumi, K., Hosoya, T., Mimura, J., Toki, T., Maher, J.M., Yamamoto, M., et al. (2011). Nrf2 regulates ferroportin 1-mediated iron efflux and counteracts lipopolysaccharide-induced ferroportin 1 mRNA suppression in macrophages. Arch. Biochem. Biophys. 508, 101-109. https://doi.org/10.1016/j.abb.2011.02.001
  35. Harvey, C.J., Thimmulappa, R.K., Singh, A., Blake, D.J., Ling, G., Wakabayashi, N., Fujii, J., Myers, A., and Biswal, S. (2009). Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic. Biol. Med. 46, 443-453. https://doi.org/10.1016/j.freeradbiomed.2008.10.040
  36. Hassannia, B., Vandenabeele, P., and Vanden Berghe, T. (2019). Targeting ferroptosis to iron out cancer. Cancer Cell 35, 830-849. https://doi.org/10.1016/j.ccell.2019.04.002
  37. Hayes, J.D. and Dinkova-Kostova, A.T. (2014). The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 39, 199-218. https://doi.org/10.1016/j.tibs.2014.02.002
  38. Hintze, K.J. and Theil, E.C. (2005). DNA and mRNA elements with complementary responses to hemin, antioxidant inducers, and iron control ferritin-L expression. Proc. Natl. Acad. Sci. U. S. A. 102, 15048-15052. https://doi.org/10.1073/pnas.0505148102
  39. Hirotsu, Y., Katsuoka, F., Funayama, R., Nagashima, T., Nishida, Y., Nakayama, K., Engel, J.D., and Yamamoto, M. (2012). Nrf2-MafG heterodimers contribute globally to antioxidant and metabolic networks. Nucleic Acids Res. 40, 10228-10239. https://doi.org/10.1093/nar/gks827
  40. Hou, W., Xie, Y., Song, X., Sun, X., Lotze, M.T., Zeh, H.J., 3rd, Kang, R., and Tang, D. (2016). Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12, 1425-1428. https://doi.org/10.1080/15548627.2016.1187366
  41. Houessinon, A., Francois, C., Sauzay, C., Louandre, C., Mongelard, G., Godin, C., Bodeau, S., Takahashi, S., Saidak, Z., Gutierrez, L., et al. (2016). Metallothionein-1 as a biomarker of altered redox metabolism in hepatocellular carcinoma cells exposed to sorafenib. Mol. Cancer 15, 38.
  42. Huang, J., Tabbi-Anneni, I., Gunda, V., and Wang, L. (2010). Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G1211-G1221. https://doi.org/10.1152/ajpgi.00322.2010
  43. Ishii, T., Itoh, K., Takahashi, S., Sato, H., Yanagawa, T., Katoh, Y., Bannai, S., and Yamamoto, M. (2000). Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J. Biol. Chem. 275, 16023-16029. https://doi.org/10.1074/jbc.275.21.16023
  44. Kagan, V.E., Mao, G., Qu, F., Angeli, J.P., Doll, S., Croix, C.S., Dar, H.H., Liu, B., Tyurin, V.A., Ritov, V.B., et al. (2017). Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81-90. https://doi.org/10.1038/nchembio.2238
  45. Knutson, M.D. (2017). Iron transport proteins: gateways of cellular and systemic iron homeostasis. J. Biol. Chem. 292, 12735-12743. https://doi.org/10.1074/jbc.R117.786632
  46. Kong, Y., Hu, L., Lu, K., Wang, Y., Xie, Y., Gao, L., Yang, G., Xie, B., He, W., Chen, G., et al. (2019). Ferroportin downregulation promotes cell proliferation by modulating the Nrf2-miR-17-5p axis in multiple myeloma. Cell Death Dis. 10, 624.
  47. Koppula, P., Lei, G., Zhang, Y., Yan, Y., Mao, C., Kondiparthi, L., Shi, J., Liu, X., Horbath, A., Das, M., et al. (2022). A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. Nat. Commun. 13, 2206.
  48. Kuang, F., Liu, J., Xie, Y., Tang, D., and Kang, R. (2021). MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells. Cell Chem. Biol. 28, 765-775.e5. https://doi.org/10.1016/j.chembiol.2021.01.006
  49. Kwak, M.K., Itoh, K., Yamamoto, M., and Kensler, T.W. (2002). Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter. Mol. Cell. Biol. 22, 2883-2892. https://doi.org/10.1128/MCB.22.9.2883-2892.2002
  50. Lee, T.D., Yang, H., Whang, J., and Lu, S.C. (2005). Cloning and characterization of the human glutathione synthetase 5'-flanking region. Biochem. J. 390, 521-528. https://doi.org/10.1042/BJ20050439
  51. Li, Q., Han, X., Lan, X., Gao, Y., Wan, J., Durham, F., Cheng, T., Yang, J., Wang, Z., Jiang, C., et al. (2017). Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight 2, e90777.
  52. Li, S., Zheng, L., Zhang, J., Liu, X., and Wu, Z. (2021). Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy. Free Radic. Biol. Med. 162, 435-449. https://doi.org/10.1016/j.freeradbiomed.2020.10.323
  53. Liu, P., Anandhan, A., Chen, J., Shakya, A., Dodson, M., Ooi, A., Chapman, E., White, E., Garcia, J.G., and Zhang, D.D. (2022). Decreased autophagosome biogenesis, reduced NRF2, and enhanced ferroptotic cell death are underlying molecular mechanisms of non-alcoholic fatty liver disease. Redox Biol. 59, 102570.
  54. Liu, P., Wu, D., Duan, J., Xiao, H., Zhou, Y., Zhao, L., and Feng, Y. (2020). NRF2 regulates the sensitivity of human NSCLC cells to cystine deprivation-induced ferroptosis via FOCAD-FAK signaling pathway. Redox Biol. 37, 101702.
  55. Lou, H., Du, S., Ji, Q., and Stolz, A. (2006). Induction of AKR1C2 by phase II inducers: identification of a distal consensus antioxidant response element regulated by NRF2. Mol. Pharmacol. 69, 1662-1672. https://doi.org/10.1124/mol.105.019794
  56. MacLeod, A.K., McMahon, M., Plummer, S.M., Higgins, L.G., Penning, T.M., Igarashi, K., and Hayes, J.D. (2009). Characterization of the cancer chemopreventive NRF2-dependent gene battery in human keratinocytes: demonstration that the KEAP1-NRF2 pathway, and not the BACH1-NRF2 pathway, controls cytoprotection against electrophiles as well as redox-cycling compounds. Carcinogenesis 30, 1571-1580. https://doi.org/10.1093/carcin/bgp176
  57. Marro, S., Chiabrando, D., Messana, E., Stolte, J., Turco, E., Tolosano, E., and Muckenthaler, M.U. (2010). Heme controls ferroportin1 (FPN1) transcription involving Bach1, Nrf2 and a MARE/ARE sequence motif at position -7007 of the FPN1 promoter. Haematologica 95, 1261-1268. https://doi.org/10.3324/haematol.2009.020123
  58. Menon, A.V., Liu, J., Tsai, H.P., Zeng, L., Yang, S., Asnani, A., and Kim, J. (2022). Excess heme upregulates heme oxygenase 1 and promotes cardiac ferroptosis in mice with sickle cell disease. Blood 139, 936-941. https://doi.org/10.1182/blood.2020008455
  59. Morris, G., Berk, M., Carvalho, A.F., Maes, M., Walker, A.J., and Puri, B.K. (2018). Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav. Brain Res. 341, 154-175. https://doi.org/10.1016/j.bbr.2017.12.036
  60. Na, H.K. and Surh, Y.J. (2014). Oncogenic potential of Nrf2 and its principal target protein heme oxygenase-1. Free Radic. Biol. Med. 67, 353-365. https://doi.org/10.1016/j.freeradbiomed.2013.10.819
  61. Namgaladze, D., Fuhrmann, D.C., and Brune, B. (2022). Interplay of Nrf2 and BACH1 in inducing ferroportin expression and enhancing resistance of human macrophages towards ferroptosis. Cell Death Discov. 8, 327.
  62. Osburn, W.O., Wakabayashi, N., Misra, V., Nilles, T., Biswal, S., Trush, M.A., and Kensler, T.W. (2006). Nrf2 regulates an adaptive response protecting against oxidative damage following diquat-mediated formation of superoxide anion. Arch. Biochem. Biophys. 454, 7-15. https://doi.org/10.1016/j.abb.2006.08.005
  63. Philpott, C.C., Ryu, M.S., Frey, A., and Patel, S. (2017). Cytosolic iron chaperones: proteins delivering iron cofactors in the cytosol of mammalian cells. J. Biol. Chem. 292, 12764-12771. https://doi.org/10.1074/jbc.R117.791962
  64. Pietsch, E.C., Chan, J.Y., Torti, F.M., and Torti, S.V. (2003). Nrf2 mediates the induction of ferritin H in response to xenobiotics and cancer chemopreventive dithiolethiones. J. Biol. Chem. 278, 2361-2369. https://doi.org/10.1074/jbc.M210664200
  65. Ren, D., Villeneuve, N.F., Jiang, T., Wu, T., Lau, A., Toppin, H.A., and Zhang, D.D. (2011). Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc. Natl. Acad. Sci. U. S. A. 108, 1433-1438. https://doi.org/10.1073/pnas.1014275108
  66. Roh, J.L., Kim, E.H., Jang, H., and Shin, D. (2017). Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol. 11, 254-262. https://doi.org/10.1016/j.redox.2016.12.010
  67. Salazar, M., Rojo, A.I., Velasco, D., de Sagarra, R.M., and Cuadrado, A. (2006). Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J. Biol. Chem. 281, 14841-14851. https://doi.org/10.1074/jbc.M513737200
  68. Sasaki, H., Sato, H., Kuriyama-Matsumura, K., Sato, K., Maebara, K., Wang, H., Tamba, M., Itoh, K., Yamamoto, M., and Bannai, S. (2002). Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J. Biol. Chem. 277, 44765-44771. https://doi.org/10.1074/jbc.M208704200
  69. Shimada, K., Skouta, R., Kaplan, A., Yang, W.S., Hayano, M., Dixon, S.J., Brown, L.M., Valenzuela, C.A., Wolpaw, A.J., and Stockwell, B.R. (2016). Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol. 12, 497-503. https://doi.org/10.1038/nchembio.2079
  70. Shin, D., Kim, E.H., Lee, J., and Roh, J.L. (2018). Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic. Biol. Med. 129, 454-462. https://doi.org/10.1016/j.freeradbiomed.2018.10.426
  71. Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., Fulda, S., Gascon, S., Hatzios, S.K., Kagan, V.E., et al. (2017). Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273-285. https://doi.org/10.1016/j.cell.2017.09.021
  72. Sun, X., Ou, Z., Chen, R., Niu, X., Chen, D., Kang, R., and Tang, D. (2016). Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63, 173-184. https://doi.org/10.1002/hep.28251
  73. Takahashi, N., Cho, P., Selfors, L.M., Kuiken, H.J., Kaul, R., Fujiwara, T., Harris, I.S., Zhang, T., Gygi, S.P., and Brugge, J.S. (2020). 3D culture models with CRISPR screens reveal hyperactive NRF2 as a prerequisite for spheroid formation via regulation of proliferation and ferroptosis. Mol. Cell 80, 828-844.e6. https://doi.org/10.1016/j.molcel.2020.10.010
  74. Tsuji, Y., Ayaki, H., Whitman, S.P., Morrow, C.S., Torti, S.V., and Torti, F.M. (2000). Coordinate transcriptional and translational regulation of ferritin in response to oxidative stress. Mol. Cell. Biol. 20, 5818-5827. https://doi.org/10.1128/MCB.20.16.5818-5827.2000
  75. Wang, X., Tomso, D.J., Chorley, B.N., Cho, H.Y., Cheung, V.G., Kleeberger, S.R., and Bell, D.A. (2007). Identification of polymorphic antioxidant response elements in the human genome. Hum. Mol. Genet. 16, 1188-1200. https://doi.org/10.1093/hmg/ddm066
  76. Wang, X.J., Sun, Z., Villeneuve, N.F., Zhang, S., Zhao, F., Li, Y., Chen, W., Yi, X., Zheng, W., Wondrak, G.T., et al. (2008). Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29, 1235-1243. https://doi.org/10.1093/carcin/bgn095
  77. Wasserman, W.W. and Fahl, W.E. (1997). Functional antioxidant responsive elements. Proc. Natl. Acad. Sci. U. S. A. 94, 5361-5366. https://doi.org/10.1073/pnas.94.10.5361
  78. Wolpaw, A.J., Shimada, K., Skouta, R., Welsch, M.E., Akavia, U.D., Pe'er, D., Shaik, F., Bulinski, J.C., and Stockwell, B.R. (2011). Modulatory profiling identifies mechanisms of small molecule-induced cell death. Proc. Natl. Acad. Sci. U. S. A. 108, E771-E780. https://doi.org/10.1073/pnas.1106149108
  79. Xie, Y., Hou, W., Song, X., Yu, Y., Huang, J., Sun, X., Kang, R., and Tang, D. (2016). Ferroptosis: process and function. Cell Death Differ. 23, 369-379. https://doi.org/10.1038/cdd.2015.158
  80. Yagoda, N., von Rechenberg, M., Zaganjor, E., Bauer, A.J., Yang, W.S., Fridman, D.J., Wolpaw, A.J., Smukste, I., Peltier, J.M., Boniface, J.J., et al. (2007). RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447, 864-868. https://doi.org/10.1038/nature05859
  81. Yamamoto, M., Kensler, T.W., and Motohashi, H. (2018). The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev. 98, 1169-1203. https://doi.org/10.1152/physrev.00023.2017
  82. Yan, H.F., Zou, T., Tuo, Q.Z., Xu, S., Li, H., Belaidi, A.A., and Lei, P. (2021). Ferroptosis: mechanisms and links with diseases. Signal Transduct. Target. Ther. 6, 49.
  83. Yang, H., Magilnick, N., Lee, C., Kalmaz, D., Ou, X., Chan, J.Y., and Lu, S.C. (2005). Nrf1 and Nrf2 regulate rat glutamate-cysteine ligase catalytic subunit transcription indirectly via NF-kappaB and AP-1. Mol. Cell. Biol. 25, 5933-5946. https://doi.org/10.1128/MCB.25.14.5933-5946.2005
  84. Yang, K., Song, H., and Yin, D. (2021). PDSS2 inhibits the ferroptosis of vascular endothelial cells in atherosclerosis by activating Nrf2. J. Cardiovasc. Pharmacol. 77, 767-776. https://doi.org/10.1097/FJC.0000000000001030
  85. Yang, W.S., Kim, K.J., Gaschler, M.M., Patel, M., Shchepinov, M.S., and Stockwell, B.R. (2016). Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl. Acad. Sci. U. S. A. 113, E4966-E4975. https://doi.org/10.1073/pnas.1603244113
  86. Yang, W.S., SriRamaratnam, R., Welsch, M.E., Shimada, K., Skouta, R., Viswanathan, V.S., Cheah, J.H., Clemons, P.A., Shamji, A.F., Clish, C.B., et al. (2014). Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317-331. https://doi.org/10.1016/j.cell.2013.12.010
  87. Yang, W.S. and Stockwell, B.R. (2008). Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 15, 234-245. https://doi.org/10.1016/j.chembiol.2008.02.010
  88. Yang, W.S. and Stockwell, B.R. (2016). Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 26, 165-176. https://doi.org/10.1016/j.tcb.2015.10.014
  89. Yin, H., Xu, L., and Porter, N.A. (2011). Free radical lipid peroxidation: mechanisms and analysis. Chem. Rev. 111, 5944-5972. https://doi.org/10.1021/cr200084z
  90. Zou, Y., Henry, W.S., Ricq, E.L., Graham, E.T., Phadnis, V.V., Maretich, P., Paradkar, S., Boehnke, N., Deik, A.A., Reinhardt, F., et al. (2020). Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 585, 603-608. https://doi.org/10.1038/s41586-020-2732-8