DOI QR코드

DOI QR Code

A Study on the Development of Early Acetone Gas Detection to Prevent the Acetone Leakage Accident

아세톤 누출사고 예방을 위한 아세톤 가스 조기감지 기술개발에 관한 연구

  • Seung Jin Jeon (Electronics and Telecommunications Research Institute) ;
  • Youngbo Choi (Department of Safety Engineering & Department of Big Data, Chungbuk National University)
  • Received : 2023.02.16
  • Accepted : 2023.04.05
  • Published : 2023.04.30

Abstract

Acetone is a widely used Volatile Organic Compound (VOC) in industries and laboratories. However, acetone affects human health adversely and causes fires and explosions. Early acetone detection and improved personnel training in safety and emergency management are necessary to prevent acetone-related accidents. The multi-VOC acetone detectors used currently have a sensitivity and selectivity limit. In this study, we discovered that Pt-loaded iron oxide (a metal oxide semiconductor) conversely, has high detection and selectivity for very low-levels of acetone gas. The loaded Pt catalyzes the reaction between the sensing materials' surface and the oxygen molecules in the air; this optimizes acetone detection and can decrease acetone-related illnesses, fires and explosions.

Keywords

References

  1. A. Mirzaei, S.G. Leonardi and G. Neri, "Detection of Hazardous Volatile Organic Compounds (VOCs) by Metal Oxide Nanostructures-based Gas Sensors: A Review", Ceram. Int., Vol. 42, No. 14, pp. 15119-15141, 2016. https://doi.org/10.1016/j.ceramint.2016.06.145
  2. X. Guan, Y. Wang, P. Luo, Y. Yu and D. Chen, "Incorporating N Atoms Into SnO2 Nanostructure as an Approach to Enhance Gas Sensing Property for Acetone", Nanomaterials, Vol, 9. No. 3, p. 445, 2019.
  3. D. M. Ha, "The Measurement and Investigation of Fire and Explosion Properties for Acetone", J. Korean Soc. Saf., Vol. 25, p. 4, 2010.
  4. H. M. Yusoff, L. K. Li, S. Izhar and M. S. M. Said, "Simulation of Acetone-water Explosion in Hydrothermal Extraction Reactor", Case Stud. Therm. Eng., Vol. 28, p. 101631, 2021.
  5. E. H. Kim, S. G. Lee and B. C. Ma, "Confirmation of the Efectiveness of Remote Chemical Spills and Leak Monitoring System through Acetone Pool Evaporation Experiments", J. Korean Soc. Saf., Vol. 37, No. 6, pp. 25-31, 2022.
  6. S. Sim, J. I. Won, H. Jeon and D. Kim, "A Study on Health Risk Assessment by Exposure to Organic Compounds in University Laboratory", The Journal of Korean Society for School & Community Health Education, Vol. 22, No. 4, pp. 49-60, 2021. https://doi.org/10.35133/kssche.20211130.05
  7. C. H. Cho, S. W. Choi, S. H. Lee, J. I. Kim and T. W. Kim, "Study on the Chemical Accidents Investigation and Effective Response System in Korea 2020", Korean Journal of Hazardous Materials, Vol. 9, No. 2, pp. 68-75, 2021. https://doi.org/10.31333/kihm.2021.9.2.68
  8. T. Jeong, D. H. Lim, M. S. Kim, J. G. Lee, B. T. Yoo and J. W. Ko, "Optimization of Gas Detector Location by Analysis of the Dispersion Model of Hazardous Chemicals", Journal of the Korean Institute of Gas, Vol. 26, No. 2, pp. 39-48, 2022. https://doi.org/10.7842/KIGAS.2022.26.2.39
  9. M. Khatib and H. Haick, "Sensors for Volatile Organic Compounds", ACS Nano, Vol. 16, No. 5, pp. 7080-7115, 2022. https://doi.org/10.1021/acsnano.1c10827
  10. J. R. Ryu, H. J. Lee, M. G. Kim and M. H. Chu, "Calibration Method of Complex Gas Sensor for VOCs", The Society of Air-conditioning and Refrigerating Engineers of Korea 2020 Conference, pp. 947-950, 2020.
  11. A. Dey, "Semiconductor Metal Oxide Gas Sensors: A Review", Mat. Sci. Eng. B, Vol. 229, pp. 206-217, 2018. https://doi.org/10.1016/j.mseb.2017.12.036
  12. V. Amiri, H. Roshan, A. Mirzaei, G. Neri and A. I. Ayesh, "Nanostructured Metal Oxide-based Acetone Gas Sensors: A review", Sensors (Switzerland), Vol. 20, pp. 1-25, 2020. https://doi.org/10.3390/s20113096
  13. P. Wang, T. Dong, C. Jia and P. Yang, "Ultraselective Acetone-gas Sensor based ZnO Flowers Functionalized by Au Nanoparticle Loading on Certain Facet", Sens. Actuators, B, Vol. 288, pp. 1-11, 2019. https://doi.org/10.1016/j.snb.2019.02.095
  14. J. W. Yoon, R. Wang, J. S. Park and J. H. Lee, "Acetone Sensing Characteristics of ZnO Nanoparticles Prepared from Zeolitic Imidazolate Framework-7", Journal of Sensor Science and Technology, Vol. 26, No. 3, pp. 204-208, 2017. https://doi.org/10.5369/JSST.2017.26.3.204
  15. J. Chen, X. Tan, H. Liu, L. Guo, J. Zhang, Y. Jiang, J. Zhang, H. Wang, X. Feng and W. Chu, "Understanding the Underlying Mechanism of the Enhanced Performance of Si Doped LiNi0.5Mn0.5-xSixO2 Cathode Material", Electrochim. Acta, Vol. 228, pp. 167-174, 2017. https://doi.org/10.1016/j.electacta.2017.01.079
  16. T. H. Kim, C. H. Kwak and J. H. Lee, "NiO/NiWO4 Composite Yolk-shell Spheres with Nanoscale NiO Outer Layer for Ultrasensitive and Selective Detection of Subppm Level p-xylene", ACS Materials & Interfaces, Vol. 9, pp. 32034-32043, 2017. https://doi.org/10.1021/acsami.7b10294
  17. C. Liu, L. Zhao, B. Wang, P. Sun, Q. Wang, Y. Gao, X. Liang, T. Zhang and G. Lu, "Acetone Gas Sensor based on NiO/ZnO Hollow Spheres: Fast Response and Recovery, and Low (ppb) Detection Limit", J. Colloid Interface Sci., Vol. 495, pp. 207-215, 2017. https://doi.org/10.1016/j.jcis.2017.01.106
  18. D. H. Kim, Y. S. Shim, J. M. Jeon, H. Y. Jeong, S. S. Park, Y. W. Kim, J. S. Kim, J. H. Lee and H.W. Jang, "Vertically Ordered Hematite Nanotube Array as an Ultrasensitive and Rapid Response Acetone Sensor", ACS Appl. Mater. Interfaces, Vol. 6, pp. 14779-14784, 2014. https://doi.org/10.1021/am504156w
  19. T. Wang, I. Can, S. Zhang, J. He, P. Sun, F. Liu and G. Lu, "Self-assembly Template Driven 3D Inverse Opal Microspheres Functionalized with Catalyst Nanoparticles Enabling a Highly Efficient Chemical Sensing Platform", ACS Appl. Mater. Interfaces, Vol. 10, pp. 5835-5844, 2018. https://doi.org/10.1021/acsami.7b19641
  20. S. Navale, Z. Yang, C. Liu, P. Ca, V. Patil, N. S. Ramgir, R. Mane and F. Stadler, "Enhanced Acetone Sensing Properties of Titanium Dioxide Nanoparticles with a Sub-ppm Detection limit", Sens. Actuators B, Vol. 255, pp. 1701-1710, 2018. https://doi.org/10.1016/j.snb.2017.08.186
  21. Q. Jia, H. Ji, Y. Zhang, Y. Chen, X. Sun and Z. Jin, "Rapid and Selective Detection of Acetone using Hierarchical ZnO Gas Sensor for Hazardous Odor Markers Application", J. Hazard. Mater., Vol. 276, pp. 262-270, 2014. https://doi.org/10.1016/j.jhazmat.2014.05.044
  22. Z. Jiang, R. Zhao, B. Sun, G. Nie, H. Ji, J. Lei and C. Wang, "Highly Sensitive Acetone Sensor based on Eu-doped SnO2 Electrospun Nanofibers", Ceram. Int., Vol. 42, pp. 15881-15888, 2016. https://doi.org/10.1016/j.ceramint.2016.07.060
  23. S. J. Choi, W. H. Ryu, S. J. Kim, H. J. Cho and I. D. Kim, "Bi-functional Co-sensitization of Graphene Oxide Sheets and Ir Nanoparticles on p-type Co3O4 Nanofibers for Selective Acetone Detection", J. Mater. Chem. B, Vol. 2, pp. 7160-7167, 2014. https://doi.org/10.1039/C4TB00767K