DOI QR코드

DOI QR Code

ALMOST QUADRATIC LIE *-DERIVATIONS ON CONVEX MODULAR *-ALGEBRAS

  • Ick-Soon Chang (Department of Mathematics, Chungnam National University) ;
  • Hark-Mahn Kim (Department of Mathematics, Chungnam National University)
  • 투고 : 2023.01.27
  • 심사 : 2023.06.09
  • 발행 : 2023.12.15

초록

In this article, we investigate an approximate quadratic Lie *-derivation of a quadratic functional equation f(ax + by) + abf(x - y) = (a + b)(af(x) + bf(y)), where ab ≠ 0, a, b ∈ ℕ, associated with the identity f([x, y]) = [f(x), y2] + [x2, f(y)] on a 𝜌-complete convex modular *-algebra χ𝜌 by using ∆2-condition via convex modular 𝜌.

키워드

과제정보

The authors declare that they have no competing interests. All of the authors would like to thank editors and referees for their valuable comments. This work was supported by research fund of Chungnam National University.

참고문헌

  1. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66. 
  2. C. Borelli and G.L. Forti, On a general Hyers-Ulam stability result, Internat. J. Math. Math. Sci., 18 (1995), 229-236, doi:10.1155/S0161171295000287. 
  3. N. Brillouet-Belluot, J. Brzd,ek, K. Cieplinski, On some recent developments in Ulam's type stability, Abst. Appl. Anal., 2012 (2012), Article ID 716936, 41 pages. 
  4. I.-S. Chang, H.-M. Kim, H.-W. Lee, Approximation of almost quadratic mappings via modular functional, J. Math. Comput. Sci., 29(2) (2023), 106-117. 
  5. S. Czerwik, Functional equations and inequalities in several variables, World Scientific, New Jersey, London, Singapore, Hong Kong, 2002. 
  6. El-Sayed El-Hady, On hyperstability of Cauchy functional equation in (2,γ)-Banach spaces, J. Math. Comput. Sci., 23(4) (2021), 354-363. 
  7. G.L. Forti, Comments on the core of the direct method for proving Hyers-Ulam stability of functional equations, J. Math. Anal. Appl., 295 (2004), 127-133. 
  8. O. Fouad, A. Radouane and M. Driss, A fixed point theorem on some multi-valued maps in modular spaces, Nonlinear Funct. Anal. Appl. 27(3) (2022), 641-648. 
  9. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436, doi:10.1006/jmaa.1994.1211. 
  10. M.B. Ghaemi, M. Choubin, G. Sadeghi, M.E. Gordji, A fixed point approach to stability of quintic functional equations in modular spaces, Kyungpook Math. J., 55 (2015), 313-326. 
  11. A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen, 48 (1996), 217-235. 
  12. D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224, doi:10.1073/pnas.27.4.222. 
  13. D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998. 
  14. S.-M. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer Optimization and its applications, Vol. 48, Springer, New York, 2011. 
  15. S. Karthikeyan, C. Park, P. Palani, T.R.K. Kumar, Stability of an additive-quartic functional equation in modular spaces, J. Math. Comput. Sci., 26 (2022), 22-40. 
  16. H.-M. Kim and Y. Hong, Approximate quadratic mappings in modular spaces, Int. J. Pure Appl. Math., 116 (2017), 31-43. 
  17. H.-M. Kim and Y. Hong, Additional stability results for quartic Lie *-derivations, Nonlinear Funct. Anal. Appl., 24(3) (2019), 583-593. 
  18. H.-M. Kim, J.-S. Park and H.-Y. Shin, Approximation of quadratic Lie *-derivations on ρ-complete convex modular algebras, J. Math. Inequal., 14(1) (2020), 121-134. 
  19. Y.-H. Lee and S.-M. Jung, Stability of some cubic-additive functional equations, Nonlinear Funct. Anal. Appl., 25(1) (2020), 35-54. 
  20. Z. Moszner, On the stability of functional equations, Aequationes Math., 77 (2009), 33-88. 
  21. J. Musielak and W. Orlicz, On modular spaces, Studia Math., 18 (1959), 49-65. 
  22. H. Nakano, Modulared Semi-Ordered Linear Spaces, Tokyo Math. Book Ser., 1 Maruzen Co. Ltd. Tokyo, 1950. 
  23. C. Park, A. Bodaghi, S.O. Kim, A fixed point approach to stability of additive mappings in modular spaces without ∆2-conditions, J. Comput. Anal. Appl., 24 (2018), 1038-1048. 
  24. C. Park, J.M. Rassias, A. Bodaghi, S.O. Kim, Approximate homomorphisms from ternary semigroups to modular spaces, Rev. Real Acad. Cienc. Exactas, Fis. Nat. Ser. A-Mat., 2019, 113, 2175-2188. 
  25. M. Ramdoss, D. Pachaiyappan, I. Hwang and C. Park, Stability of an n-variable mixed type functional equation in probabilistic modular space, AIMS Mathematics, 5(6), (2020), 5903-5915. 
  26. J.M. Rassias, On the stability of the Euler-Lagrange functional equation, Chinese J. Math., 20(2) (1992), 185-190. 
  27. J.M. Rassias, On the stability of the general Euler-Lagrange functional equation, Demonstratio Math., XXIX (1996), 755-766. 
  28. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300, doi:10.1090/S0002-9939-1978-0507327-1. 
  29. Th.M. Rassias, Functional equations, inequalities and applications, Kluwer Acadmic Publishers, Dordrecht, Boston and London, 2003. 
  30. G. Sadeghi, A fixed point approach to stability of functional equations in modular spaces, Bull. Malays. Math. Sci. Soc., 37(2) (2014), 333-344. 
  31. S.M. Ulam, Problems in Modern Mathematics, Chap. VI, Wiley, New York, 1960. 
  32. K. Wongkum, P. Chaipunya and P. Kumam, On the generalized Ulam-Hyers-Rassias stability of quadratic mappings in modular spaces without ∆2-conditions, J. Funct. Spaces, Vol. 2015, Article ID 461719, 6 pages, doi:10.1155/2015/461719. 
  33. K. Wongkum and P. Kumam, The stability of sextic functional equation in fuzzy modular spaces, J. Nonlinear Sci. Appl., 9 (2016), 3555-3569.