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Abstract. In this article, we investigate an approximate quadratic Lie ∗-derivation of a
quadratic functional equation

f(ax+ by) + abf(x− y) = (a+ b)(af(x) + bf(y)),

where ab 6= 0, a, b ∈ N, associated with the identity f([x, y]) = [f(x), y2] + [x2, f(y)] on a

ρ-complete convex modular ∗-algebra χρ by using ∆2-condition via convex modular ρ.

1. Introduction

Let us recall that the problem of stability of functional equations has been
inspired by a question of Ulam concerning the stability of homomorphisms
on groups. In 1940, Ulam [31] at the Mathematics Club of the University
of Wisconsin has presented the question concerning the stability of group
homomorphisms: when a solution of an equation of group homomorphism,
differing slightly from a given one, must be near to the exact solution of the
given equation. Hyers [12] has solved the problem of Ulam for the case of
additive mappings in 1941. The result was generalized by Aoki [1] in 1950, by
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Rassias [28] in 1978, by Rassias [26] in 1992, and by Gǎvruta [9] in 1994. Over
the last few decades, many mathematicians have investigated the stability
problems of several different types of functional equations between various
linear spaces together with functionals [3, 5, 7, 8, 13, 14, 20, 29, 33]. In
particular, Rassias [27] investigated the Hyers–Ulam stability of the Euler–
Lagrange quadratic equation

f(ax+ by) + f(bx− ay) = (a2 + b2)(f(x) + f(y)), (1.1)

which is a generalized form of the classical quadratic equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1.2)

between vector spaces. Concerning stability problems of functional equations,
the stability theorems of various functional equations in modular spaces have
been intensively established by many authors (see, e.g., [10, 15, 23, 24, 25]).

In the present paper, we first investigate generalized Hyers–Ulam stability
of the following modified Euler–Lagrange quadratic functional equation

f(ax+ by) + abf(x− y) = (a+ b)(af(x) + bf(y)), (1.3)

associated with quadratic Lie ∗-derivations, where a, b are any nonzero fixed
natural numbers in N, without using both Fatou property and ∆2-condition,
and then alternatively present generalized Hyers–Ulam stability of the equa-
tion (1.3) associated with quadratic Lie ∗-derivations using necessarily ∆2-
condition but not using the Fatou property in ρ-complete convex modular
∗-algebras.

2. Definitions and preliminaries

First of all, the concept of modular spaces has been introduced by Nakano
[22], and then by Musielak and Orlicz [21]. Now, we recall some basic def-
initions and remarks of modular spaces with modular functions, which are
primitive notions corresponding to norm or metric, as in the followings [16,
19, 25, 30, 32].

Definition 2.1. Let χ be a linear space and C be a set of complex numbers.

(a) A function ρ : χ → [0,+∞] is called a modular, (convex modular,
resp.) if for arbitrary x, y ∈ χ,
(1) ρ(x) = 0 if and only if x = 0,
(2) ρ(αx) = ρ(x) for every scalar α with |α| = 1,
(3) ρ(αx + βy) ≤ ρ(x) + ρ(y), (ρ(αx + βy) ≤ αρ(x) + βρ(y), resp.)

for every scalars α, β, where α + β = 1 and α, β ≥ 0, acting on
the real linear space χ,

(b) alternatively, if (3) is replaced by
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(3)’ ρ(αx + βy) ≤ |α|ρ(x) + |β|ρ(y) for any scalars α, β ∈ C with
|α| + |β| = 1, acting on the complex linear space χ, then we say
that ρ is a convex modular on the complex linear space χ [17, 18].

Now, we observe that a modular ρ defines a corresponding modular space,
that is, the linear space χρ given by

χρ = {x ∈ χ : ρ(λx)→ 0 as λ→ 0}.

It is well known that for a convex modular ρ on χ, ρ(tx) is an increasing
function in t ≥ 0 for each fixed x ∈ χ, that is, ρ(αx) ≤ ρ(βx) whenever
0 ≤ |α| < |β|. Moreover, we see that ρ(αx) ≤ αρ(x) for all x ∈ χ and for all
α with 0 ≤ α ≤ 1, and that ρ(αx) ≤ |α|ρ(x) for all x ∈ χ and all α ∈ C with
|α| ≤ 1.

Remark 2.2. (a) In general, we note that ρ
(∑n

i=1 αixi
)
≤
∑n
i=1 αiρ(xi) for all

xi ∈ χ and αi ≥ 0 (i = 1, · · · , n) if 0 <
∑n

i=1 αi := α ≤ 1 [16].
(b) Consequently, we lead to ρ

(∑n
i=1 αixi

)
≤
∑n

i=1 |αi|ρ(xi) for all xi ∈ χ
and all αi ∈ C if 0 <

∑n
i=1 |αi| := α ≤ 1.

Definition 2.3. Let χρ be a modular space and let {xn} be a sequence in χρ.
Then,

(a) {xn} is ρ-convergent to x ∈ χρ and write xn
ρ−→ x if ρ(xn − x) → 0 as

n→ +∞.
(b) {xn} is called ρ-Cauchy in χρ if ρ(xn − xm)→ 0 as n,m→ +∞.
(c) A subset K of χρ is called ρ-complete if any ρ-Cauchy sequence is

ρ-convergent to an element in K.

Now, we say that χρ is called a convex modular algebra if the fundamental
space X is an algebra with convex modular ρ subject to ρ(ab) ≤ ρ(a)ρ(b) for
all a, b ∈ X. A subset K of a convex modular algebra χρ is called ρ-complete
if any ρ-Cauchy sequence in K is ρ-convergent to an element in K.

It is said that the modular ρ has the Fatou property if

ρ(x) ≤ lim inf
n→∞

ρ(xn),

whenever the sequence {xn} is ρ-convergent to x. For a given natural number
n > 1, a modular function ρ is said to satisfy the ∆n-condition if there exists
a constant κn > 0 such that ρ(nx) ≤ κnρ(x) for all vectors x ∈ χρ. Then, it
is noted that if a convex modular ρ satisfies the ∆2-condition, then κ2 ≥ 2 for
nontrivial convex modular ρ [16], and ρ also satisfies the ∆n-condition for any
natural number n > 2 because there exists a natural number l ∈ N such that
n
2l
≤ 1, and thus ρ(nx) = ρ( n

2l
2lx) ≤ κnρ(x) for all x ∈ χρ, where κn := n

2l
κl2.
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Remark 2.4. A convex modular function ρ satisfies the ∆2-condition if and
only if the modular ρ satisfies the ∆n-condition.

Now, it is said that χρ is called a convex modular ∗-algebra if the basic
space χ is a ∗-algebra with convex modular ρ subject to ρ(ab) ≤ ρ(a)ρ(b) and
ρ(c∗) = ρ(c) for all a, b, c ∈ χρ. A subset K of a convex modular ∗-algebra χρ is
called ρ-complete if and only if any ρ-Cauchy sequence in K is ρ-convergent to
an element in K. It is said that a linear mapping f is called a Lie ∗-derivation
if

f([x, y]) = [f(x), y] + [x, f(y)] and f(z∗) = f(z)∗

for all vectors x, y, z, where [x, y] = xy − yx. In a similar way, they say that
a quadratic mapping f is quadratic homogeneous if f(λx) = λ2f(x) for all
vectors x and all scalars λ, and in addition a quadratic homogeneous mapping
f is called a quadratic Lie ∗-derivation if

f([x, y]) = [f(x), y2] + [x2, f(y)] and f(z∗) = f(z)∗

for all vectors x, y, z ∈ χρ [17, 18].

Throughout the paper, χρ will denote a ρ-complete convex modular ∗-
algebra with nontrivial convex modular ρ unless we give any specific reference.

3. Approximate quadratic Lie ∗-derivations

First of all, we remark that the equation (1.3) is equivalent to the orig-
inal quadratic functional equation (1.2), and so every solution of equation
(1.3) is a quadratic mapping [4]. For notational convenience, we set Tn0 :={
eiθ ∈ C : 0 ≤ θ ≤ 2π

n0

}
for a given n0 ∈ N, and we denote the quadratic dif-

ference operator QEλf and quadratic Lie ∗-derivation QDf associated with

quadratic equation (1.3) as follows, respectively:

QEλf (x, y) := f(λax+ λby) + λ2abf(x− y)

− λ2(a+ b)[af(x) + bf(y),

QDf (x, y) := f([x, y])− [f(x), y2]− [x2, f(y)]

for all x, y in χρ and λ ∈ Tn0 , which act as perturbing terms for given approx-
imate quadratic Lie ∗-derivations f : χρ → χρ. In the following, we present a
generalized Hyers–Ulam stability of the equation (1.3) via direct method as-
sociated with approximate quadratic Lie ∗-derivations in ρ-complete modular
∗-algebras without using both Fatou property and ∆2-condition.

Theorem 3.1. Suppose that a mapping f : χρ → χρ with f(0) = 0 satisfies

ρ(QEλf (x, y) + f(z∗)− f(z)∗) ≤ φ1(x, y, z), (3.1)

ρ(QDf (x, y)) ≤ φ2(x, y)
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and φ1, φ2 : χ2
ρ → [0,+∞) are mappings such that

Φ1(x, y, z) :=
∞∑
j=0

φ1((a+ b)jx, (a+ b)jy, (a+ b)jz)

(a+ b)2(j+1)
< +∞, (3.2)

lim
n→∞

φ2((a+ b)nx, (a+ b)ny)

(a+ b)4n
= 0

for all x, y ∈ χρ and λ ∈ Tn0 . If for each x ∈ χρ the mapping t→ f(tx) from
R to χρ is continuous, then there exists a unique quadratic Lie ∗-derivation
F1 : χρ → χρ, defined as

F1(x) = ρ− lim
n→∞

f((a+ b)nx)

(a+ b)2n
,

which satisfies the equation (1.3) and the approximation

ρ(f(x)− F1(x)) ≤ Φ(x, x, 0) (3.3)

near f for all x ∈ χρ.

Proof. Interchanging (x, y, z) with (x, x, 0) in (3.1), we obtain

ρ(QE1
f (x, x)) = ρ

(
f((a+ b)x)− (a+ b)2f(x)

)
≤ φ1(x, x, 0), (3.4)

which yields

ρ
(
f(x)− f((a+ b)x)

(a+ b)2

)
≤ 1

(a+ b)2
ρ
(
f((a+ b)x)− (a+ b)2f(x)

)
≤ 1

(a+ b)2
φ1(x, x, 0)

for all x ∈ χρ. Since
m−1∑
j=n

1
(a+b)2(j+1) ≤ 1, it follows from (3.4) and the property

of convex modular ρ that

ρ
( 1

(a+ b)2m
f((a+ b)mx)− 1

(a+ b)2n
f((a+ b)nx)

)
(3.5)

= ρ
(m−n−1∑

i=0

1

(a+ b)2(n+i+1)

(
f((a+ b)n+i+1x)− (a+ b)2f((a+ b)n+ix)

))
≤

m−n−1∑
i=0

1

(a+ b)2(n+i+1)
φ1((a+ b)n+ix, (a+ b)n+ix, 0)

=

m−1∑
j=n

1

(a+ b)2(j+1)
φ1((a+ b)jx, (a+ b)jx, 0)
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for all x ∈ χρ and for any integers m,n with m > n ≥ 0. Since the right hand

side of (3.5) tends to zero as n→∞, the sequence
{
f((a+b)nx)

(a+b)2n

}
is ρ-Cauchy in

χρ, and thus it converges for all x ∈ χρ. Therefore, one may define a mapping
F1 : χρ → χρ as

F1(x) := ρ− lim
n→∞

f((a+ b)nx)

(a+ b)2n
⇐⇒ lim

n→∞
ρ
(f((a+ b)nx)

(a+ b)2n
− F1(x)

)
= 0,

which leads to a unique quadratic mapping satisfying the approximation (3.3),
as desired, using the direct method ([2, 7, 11]).

In fact, if we put (x, y, z) := ((a+b)nx, (a+b)ny, 0) in (3.1), and then divide
the resulting inequality by (a+ b)2n, one obtains

ρ
(QEλf ((a+ b)nx, (a+ b)ny)

(a+ b)2n

)
≤
ρ(QEλf ((a+ b)nx, (a+ b)ny))

(a+ b)2n

≤ φ1((a+ b)nx, (a+ b)ny, 0)

(a+ b)2n
,

which tends to zero as n → +∞ for all x, y ∈ χρ and all λ ∈ Tn0 . Thus,

choosing a natural number L with a2+3ab+b2+2
L ≤ 1 we figure out

ρ(
1

L
QEλF1

(x, y))

= ρ
( 1

L
QEλF1

(x, y)−
QEλf ((a+ b)nx, (a+ b)ny)

L · (a+ b)2n
+
QEλf ((a+ b)nx, (a+ b)ny)

L · (a+ b)2n

)
≤ 1

L
ρ
(
F1

(
λax+ λby

)
−
f
(
(a+ b)n(λax+ λby)

)
(a+ b)2n

)
+
|λ|2ab
L

ρ
(
F1

(
x− y

)
−
f
(
(a+ b)n(x− y)

)
(a+ b)2n

)
+
|λ|2(a+ b)a

L
ρ
(
F1(x)− f((a+ b)nx)

(a+ b)2n

)
+
|λ|2(a+ b)b

L
ρ
(
F1(y)− f((a+ b)ny)

(a+ b)2n

)
+

1

L
ρ
(QEλf ((a+ b)nx, (a+ b)ny

)
(a+ b)2n

)
for all x, y ∈ χρ and all positive integers n by Remark 2.2. Taking the limit
as n→ +∞ in the last inequality, we arrive at the desired functional identity
ρ( 1

LQE
λ
F1

(x, y)) = 0, and so

QEλF1
(x, y) = 0 (3.6)
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for all x, y ∈ χρ and all λ ∈ Tn0 . Hence F1 satisfies the equation (1.3) and so
it is quadratic. It follows from (3.6) that

QEλF1
(x, x) = 0 ⇐⇒ F1((a+ b)λx) = (a+ b)2λ2F1(x)

for all x ∈ χρ and all λ ∈ Tn0 , which yields F1(λx) = λ2F1(x) for all x ∈ χρ
and all unit scalars λ ∈ T1. From the assumption that for each x ∈ χρ the
mapping t→ f(tx) from R to χρ is continuous, it follows that F1(tx) = t2F1(x)
for all x ∈ χρ and all t ∈ R by the same argument as in the paper [28]. Thus,
for any nonzero λ ∈ C

F1(λx) = F1

(
(a+ b)

λ

|λ|
|λ|

(a+ b)
x

)
= (a+ b)2

(
λ

|λ|

)2

F1

(
|λ|

(a+ b)
x

)
= (a+ b)2

(
λ

|λ|

)2( |λ|
(a+ b)

)2

F1(x) = λ2F1(x),

which concludes that F1 is quadratic homogeneous over C.
On the other hand, since

n∑
i=0

1

(a+ b)2(i+1)
+

1

(a+ b)2
≤ 1

for all n ∈ N, it follows from (3.4) and Remark 2.2 that

ρ(f(x)− F1(x)) = ρ
( n∑
i=0

1

(a+ b)2(i+1)

(
(a+ b)2f((a+ b)ix)− f((a+ b)i+1x)

)
+
f((a+ b)n+1x)

(a+ b)2(n+1)
− F1((a+ b)x)

(a+ b)2

)
≤

n∑
i=0

1

(a+ b)2(i+1)
φ1((a+ b)ix, (a+ b)ix, 0)

+
1

(a+ b)2
ρ
(f((a+ b)n · (a+ b)x)

(a+ b)2n
− F1((a+ b)x)

)
,

without applying the Fatou property of ρ for all x ∈ χρ and all n ∈ N, from
which we obtain the approximation (3.3) near f by taking n → +∞ in the
last inequality.
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In the last part, we claim that F1 is a quadratic Lie ∗-derivation. In view
of the inequality in (3.1) and the second condition in (3.2), we arrive at

ρ(
1

4
QDF1(x, y)) = ρ

(1

4
QDF1(x, y)−

QDf (a+ b)n(x, y)

4 · (a+ b)4n
+
QDf (a+ b)n(x, y)

4 · (a+ b)4n

)
≤ 1

4
ρ
(
F1

(
[x, y]

)
−
f
(
(a+ b)2n[x, y]

)
(a+ b)4n

)
+

1

4
ρ
( [x2, f((a+ b)ny)]

(a+ b)2n
− [x2, F1(y)]

)
+

1

4
ρ
( [f((a+ b)nx), y2]

(a+ b)2n
− [F1(x), y2]

)
+
φ2(a+ b)n(x, y)

4 · (a+ b)4n

for all x, y ∈ χρ, which tends to zero as n tends to +∞. Therefore, F1 is a
quadratic Lie derivation. In addition, we get the following inequality

ρ
(1

3

(
F1(z

∗)− F1(z)
∗
))
≤ 1

3
ρ
(
F1(z

∗)− f((a+ b)nz∗)

(a+ b)2n

)
+

1

3
ρ
(f((a+ b)nz)

(a+ b)2n

∗
− F1(z)

∗
)

+
1

3
ρ
(f((a+ b)nz∗)

(a+ b)2n
− f((a+ b)nz)

(a+ b)2n

∗)
≤ 1

3
ρ
(
F1(z

∗)− f((a+ b)nz∗)

(a+ b)2n

)
+

1

3
ρ
(f((a+ b)nz)

(a+ b)2n

∗
− F1(z)

∗
)

+
φ1(0, 0, (a+ b)nz)

3 · (a+ b)2n

for all vector z ∈ χρ. Taking n → +∞, one concludes F1 is a quadratic Lie
∗-derivation. Therefore, the mapping F1 is a unique quadratic Lie ∗-derivation
near f satisfying the approximation (3.3) in the ρ-complete convex modular
∗-algebra χρ. �

As a corollary, we obtain a stability result under strictly quadratical con-
tractive conditions over control functions of perturbing terms QEλf and QDf .

Corollary 3.2. Suppose there exist two functions φ1 : χ3
ρ → [0,+∞) and

φ2 : χ2
ρ → [0,+∞) and two constant li with 0 < li < 1 (i = 1, 2) for which a
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mapping f : χρ → χρ with f(0) = 0 satisfies

ρ(QEλf (x, y) + f(z∗)− f(z)∗) ≤ φ1(x, y, z),
φ1(a+ b)(x, y, z) ≤ (a+ b)2l1φ1(x, y, z),

ρ(QDf (x, y)) ≤ φ2(x, y),

φ2(a+ b)(x, y) ≤ (a+ b)4l2φ2(x, y)

for all x, y, z ∈ χρ and all λ ∈ Tn0 . If for each x ∈ χρ the mapping t →
f(tx) from R to χρ is continuous, then there exists a unique quadratic Lie
∗-derivation F1 : χρ → χρ which satisfies the equation (1.3) and

ρ(f(x)− F1(x)) ≤ 1

(a+ b)2(1− l1)
φ1(x, x, 0)

for all x ∈ χρ.

In the following, we are going to investigate alternatively generalized Hyers–
Ulam stability of the equation (1.3) associated with approximate quadratic Lie
∗-derivations via direct method using necessarily ∆2-condition but not using
the Fatou property in ρ-complete convex modular ∗-algebras.

Theorem 3.3. Let χρ be a ρ-complete convex modular ∗-algebra with ∆2-
condition. Suppose there exist two functions ϕ1 : χ3

ρ → [0,+∞) and ϕ2 : χ2
ρ →

[0,+∞) for which a mapping f : χρ → χρ satisfies

ρ(QEλf (x, y) + f(z∗)− f(z)∗) ≤ ϕ1(x, y, z), (3.7)
∞∑
j=1

κ3j

(a+ b)j
ϕ1

( x, y, z

(a+ b)j

)
:= Ψ(x, y, z) <∞,

ρ(QDf (x, y)) ≤ ϕ2(x, y), (3.8)

lim
n→∞

κ4nϕ2((a+ b)−n(x, y)) = 0

for all x, y, z ∈ χρ and all λ ∈ Tn0 , where κ is the smallest positive real number
such that ρ((a+ b)x) ≤ κρ(x), (a+ b) ≤ κ derived from the ∆2-condition, for
any x ∈ χρ. If in addition for each x ∈ χρ the mapping t → f(tx) from
R to χρ is continuous, then there exists a unique quadratic Lie ∗-derivation
F2 : χρ → χρ satisfies the equation (1.3) and the approximation

ρ(f(x)− F2(x)) ≤ 1

(a+ b)κ
Ψ(x, x, 0) (3.9)

for all x ∈ χρ.

Proof. First, we remark that since
∑∞

j=1
κ3j

(a+b)j
ϕ1(0, 0, 0) = Ψ(0, 0, 0) < +∞

and ρ(QE1
f (0, 0)) ≤ ϕ1(0, 0, 0), we lead to ϕ1(0, 0, 0) = 0, QE1

f (0, 0) = 0 and
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so f(0) = 0. Thus, it follows from (3.4) that

ρ
(
f(x)− (a+ b)2f

( x

(a+ b)

))
≤ ϕ1

( x, x, 0
(a+ b)

)
≤ κ

(a+ b)
ϕ1

( x, x, 0
(a+ b)

)
for all x ∈ χρ. Thus, one obtains the following inequality by the convexity of
the modular ρ and ∆2-condition

ρ
(
f(x)− (a+ b)4f

( x

(a+ b)2

))
≤ 1

(a+ b)
ρ
(

(a+ b)f(x)− (a+ b)3f
( x

(a+ b)

))
+

1

(a+ b)2
ρ
(

(a+ b)4f
( x

(a+ b)

)
− (a+ b)6f

( x

(a+ b)2

))
≤ κ

(a+ b)
ϕ1

( x, x, 0
(a+ b)

)
+

κ4

(a+ b)2
ϕ1

( x, x, 0

(a+ b)2

)
for all x ∈ χρ. Then using the inductive process for any n ≥ 2, we prove the
following functional inequality

ρ
(
f(x)− 4nf

( x
2n

))
≤ 1

κ2

n∑
j=1

κ3j

(a+ b)j
ϕ1

( x, x, 0

(a+ b)j

)
(3.10)

for all x ∈ χρ. In fact, it is true for j = 1, 2. Assume that the inequality (3.10)
holds true for n. Thus, using the convexity of the modular ρ, we deduce

ρ
(
f(x)− (a+ b)2(n+1)f

( x

(a+ b)n+1

))
= ρ
( 1

(a+ b)

{
(a+ b)f(x)− (a+ b)3f

( x

(a+ b)

)}
+

1

(a+ b)

{
(a+ b)3f(

x

(a+ b)
)− (a+ b)2n+3f(

x

(a+ b)n+1
)
})

≤ κ

(a+ b)
ϕ1

( x, x, 0
(a+ b)

)
+

κ3

(a+ b)
· 1

κ2

n∑
j=1

κ3j

(a+ b)j
ϕ1

( x, x, 0

(a+ b)j+1

)
=

κ

(a+ b)
ϕ1

( x, x, 0
(a+ b)

)
+

1

κ2

n∑
j=1

κ3(j+1)

(a+ b)j+1
ϕ1

( x, x, 0

(a+ b)j+1

)

=
1

κ2

n+1∑
j=1

κ3j

(a+ b)j
ϕ1

( x, x, 0

(a+ b)j

)
,
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which proves (3.10) for n + 1. Now, replacing x by (a + b)−mx in (3.10), we
have

ρ
(

(a+ b)2mf
( x

(a+ b)m

)
− (a+ b)2(m+n)f

( x

(a+ b)m+n

))
≤ κ2mρ

(
f
( x

(a+ b)m

)
− (a+ b)2nf

( x

(a+ b)m+n

))
≤ κ2m

κ2

n∑
j=1

κ3j

(a+ b)j
ϕ1

( x

(a+ b)j+m
,

x

(a+ b)j+m
, 0
)

≤ κ2m

κ2

n∑
j=1

κ3j

(a+ b)j
ϕ1

( x

(a+ b)j+m
,

x

(a+ b)j+m
, 0
)
· κm

(a+ b)m

=
1

κ2

n∑
j=1

κ3(j+m)

(a+ b)j+m
ϕ1

( x

(a+ b)j+m
,

x

(a+ b)j+m
, 0
)

=
1

κ2

m+n∑
j=m+1

κ3j

(a+ b)j
ϕ1

( x

(a+ b)j
,

x

(a+ b)j
, 0
)
,

which converges to zero as m → +∞ by the assumption (3.8). Thus, the
sequence {(a + b)2nf( x

(a+b)n )} is ρ-Cauchy for all x ∈ χρ and so it is ρ-

convergent in χρ since the space χρ is ρ-complete. Thus, we may define a
mapping F2 : χρ → χρ as

F2(x) := ρ− lim
n→∞

(a+ b)2nf(
x

(a+ b)n
)

⇐⇒ lim
n→∞

ρ
(

(a+ b)2nf(
x

(a+ b)n
)− F2(x)

)
= 0

for all x ∈ χρ.
Now, we prove the mapping F2 satisfies the equation (1.3). Setting (x, y, z) :=

(a + b)−n(x, y, 0) in (3.7), and then multiplying the resulting inequality by
(a+ b)2n, we get

ρ((a+ b)2nQEλf ((a+ b)−n(x, y))) ≤ κ2nϕ1((a+ b)−n(x, y, 0))

≤ κ3n

(a+ b)n
ϕ1((a+ b)−n(x, y, 0)),
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which tends to zero as n→ +∞ for all x, y ∈ χρ. Thus, it follows that

ρ
( 1

L
QEλF2

(x, y)
)
≤ 1

L
ρ
(
F2(λax+ λby)− (a+ b)2nf

(λax+ λby

(a+ b)n

))
+
|λ|2ab
L

ρ
(
F2(x− y)− (a+ b)2nf

( x− y
(a+ b)n

))
+
|λ|2(a+ b)a

L
ρ
(
F2(x)− (a+ b)2nf

( x

(a+ b)n

))
+
|λ|2(a+ b)b

L
ρ
(
F2(y)− (a+ b)2nf

( y

(a+ b)n

))
+

1

L
ρ
(

(a+ b)2nQEλf

(
(a+ b)−n(x, y)

))

for all x, y ∈ χρ and all positive integers n, where L is the smallest natural
number with a2 + 3ab+ b2 + 2 ≤ L. Taking the limit as n → +∞ in the last
inequality, we arrive at QEλF2

(x, y) = 0 for all x, y ∈ χρ and all λ ∈ Tn0 . Hence
F2 satisfies the equation (1.3), and so it is quadratic homogeneous by the same
reasoning as in Theorem 3.1.

Furthermore, without using the Fatou property one can see the following
inequality

ρ(f(x)− F2(x)) = ρ
( 1

(a+ b)

{
(a+ b)f(x)− (a+ b)2n+1f

( x
2n

)}
+

1

(a+ b)

{
(a+ b)2n+1f

( x
2n

)
− (a+ b)F2(x)

})
≤ κ

(a+ b)
· 1

κ2

n∑
j=1

κ3j

(a+ b)j
ϕ1(

x, x, 0

2j
)

+
κ

(a+ b)
ρ
(

(a+ b)2nf(
x

(a+ b)n
)− F2(x)

)
≤ 1

(a+ b)κ

∞∑
j=1

κ3j

(a+ b)j
ϕ1

(x, x, 0
2j

)
=

1

2κ
Ψ(x, x, 0),

which yields the approximation (3.9) by taking n→ +∞.
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To prove that F2 is a quadratic Lie ∗-derivation, we observe by the inequality
(3.8) that

ρ
(1

4
QDF2(x, y)

)
= ρ
(1

4
QDF2(x, y)− (a+ b)4n

QDf ((a+ b)−n(x, y))

4

+ (a+ b)4n
QDf ((a+ b)−n(x, y))

4

)
≤ 1

4
ρ
(
F2([x, y])− (a+ b)4nf((a+ b)−2n[x, y])

)
+

1

4
ρ
(
[x2, (a+ b)2nf((a+ b)−ny)− F2(y)]

)
+

1

4
ρ
(
[(a+ b)2nf((a+ b)−nx)− F2(x), y2]

)
+
κ4n

4
ϕ2

(
2−n(x, y)

)
for all x, y ∈ χρ, from which QDF2(x, y) = 0 by taking n → +∞ and so F2

is a quadratic Lie derivation. In addition, it follows from the definition of F2

that the following inequality

ρ
(1

3

(
F2(z

∗)− F2(z)
∗
))
≤ 1

3
ρ
(
F2(z

∗)− (a+ b)2nf
( z∗

(a+ b)n

))
+

1

3
ρ
(

(a+ b)2nf
( z

(a+ b)n

)∗
− F2(z)

∗
)

+
κ3n

3(a+ b)n
ϕ1

(
0, 0,

z

(a+ b)n

)
holds for all vectors z ∈ χρ, which goes to zero as n → +∞. Hence, one
concludes that F2 is a quadratic Lie ∗-derivation. Hence, the mapping F2 is a
unique quadratic Lie ∗-derivation satisfying the estimation (3.9) near f. �

Corollary 3.4. Let χρ be a ρ-complete convex modular ∗-algebra with ∆2-
condition. Suppose there exist two functions ϕ1 : χ3

ρ → [0,+∞) and ϕ2 : χ2
ρ →

[0,+∞) and two constant li with 0 < l1 <
(a+b)3

κ3
and 0 < l2 <

(a+b)4

κ4
for which

a mapping f : χρ → χρ satisfies

ρ(QEλf (x, y) + f(z∗)− f(z)∗) ≤ ϕ1(x, y, z), ϕ1(
x, y, z

(a+ b)
) ≤ l1

(a+ b)2
ϕ1(x, y, z),

ρ(QDf (x, y)) ≤ ϕ2(x, y), ϕ2(
x, y

(a+ b)
) ≤ l2

(a+ b)4
ϕ2(x, y)

for all x, y, z ∈ χρ and all λ ∈ Tn0 . If for each x ∈ χρ the mapping t →
f(tx) from R to χρ is continuous, then there exists a unique quadratic Lie
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∗-derivation F2 : χρ → χρ satisfies the equation (1.3) and

ρ(f(x)− F2(x)) ≤ κ2l1
(a+ b)((a+ b)3 − κ3l1)

ϕ1(x, x, 0)

for all x ∈ χρ.

Remark 3.5. In Theorem 3.3, if χρ is a Banach ∗-algebra with norm ‖·‖ := ρ,
and so ρ((a+ b)x) = (a+ b)ρ(x), κ := (a+ b), then we see from (3.7) and (3.8)
that there exists a unique quadratic Lie ∗-derivation F2 : χρ → χρ, defined as
F2(x) = limn→∞(a+ b)2nf( x

(a+b)n ), x ∈ χρ, which satisfies the equation (1.3)

and the estimation

ρ(f(x)− F2(x)) ≤ 1

(a+ b)2

∞∑
j=1

(a+ b)2jϕ1

(
x

(a+ b)j
,

x

(a+ b)j
, 0

)
near f for all x ∈ χρ.

As a corollary of Theorem 3.1 and Theorem 3.3, we obtain the following
stability result of approximate quadratic Lie ∗-derivations on complete normed
∗-algebras χρ, which may be considered as χρ equipped with norm ‖ · ‖ = ρ(·).

Corollary 3.6. Let χρ be a complete normed ∗-algebra. For given nonnegative
real numbers θi, ϑi together with ri 6= 2(i = 1, 2, 3) and p1, p2 with p1 + p2 6= 2,
suppose that a mapping f : χρ → χρ with f(0) = 0 satisfies

‖QEλf (x, y) + f(z∗)− f(z)∗‖ ≤ θ1‖x‖r1 + θ2‖y‖r2 + θ3(‖x‖p1‖y‖p2 + ‖z‖r3),

‖QDf (x, y)‖ ≤ ϑ1‖x‖2r1 + ϑ2‖y‖2r2 + ϑ3‖x‖2p1‖y‖2p2

for all x, y, z ∈ χρ and all λ ∈ Tn0 . If for each x ∈ χρ the mapping t →
f(tx) from R to χρ is continuous, then there exists a unique quadratic Lie
∗-derivation F : χρ → χρ such that

‖f(x)− F (x)‖ ≤ θ1‖x‖r1
|(a+ b)2 − (a+ b)r1 |

+
θ2‖x‖r2

|(a+ b)2 − (a+ b)r2 |

+
θ3‖x‖p1+p2

|(a+ b)2 − (a+ b)p1+p2 |
for all x ∈ χρ.

4. Conclusion

In the paper, we are devoted to proving stability results for an approximate
quadratic Lie ∗-derivation associated with a quadratic functional equation in
ρ-complete convex modular ∗-algebra by way of the direct method. As results,
we have obtained stability results of approximate quadratic Lie ∗-derivations
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in Banach ∗-algebras, and these stability results could be applied to various
∗-algebras.
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[9] P. Gǎvruta, A generalization of the Hyers–Ulam–Rassias stability of approximately addi-
tive mappings, J. Math. Anal. Appl., 184 (1994), 431–436, doi:10.1006/jmaa.1994.1211.

[10] M.B. Ghaemi, M. Choubin, G. Sadeghi, M.E. Gordji, A fixed point approach to stability
of quintic functional equations in modular spaces, Kyungpook Math. J., 55 (2015),
313–326.

[11] A. Grabiec, The generalized Hyers–Ulam stability of a class of functional equations,
Publ. Math. Debrecen, 48 (1996), 217–235.

[12] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci.
U.S.A. 27 (1941), 222–224, doi:10.1073/pnas.27.4.222.

[13] D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several
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