DOI QR코드

DOI QR Code

Lung Imaging Reporting and Data System (Lung-RADS) in Radiology: Strengths, Weaknesses and Improvement

영상의학에서 폐영상 판독과 자료체계: 강점, 단점, 그리고 개선

  • Gong Yong Jin (Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University and Medical School)
  • 진공용 (전북대학교 의과대학 전북대학교병원 임상의학연구소-의생명연구원, 영상의학과)
  • Received : 2022.10.09
  • Accepted : 2022.12.27
  • Published : 2023.01.01

Abstract

In 2019, the American College of Radiology announced Lung CT Screening Reporting & Data System (Lung-RADS) 1.1 to reduce lung cancer false positivity compared to that of Lung-RADS 1.0 for effective national lung cancer screening, and in December 2022, announced the new Lung-RADS 1.1, Lung-RADS 2022 improvement. The Lung-RADS 2022 measures the nodule size to the first decimal place compared to that of the Lung-RADS 1.0, to category 2 until the juxtapleural nodule size is < 10 mm, increases the size criterion of the ground glass nodule to 30 mm in category 2, and changes categories 4B and 4X to extremely suspicious. The category was divided according to the airway nodules location and shape or wall thickness of atypical pulmonary cysts. Herein, to help radiologists understand the Lung-RADS 2022, this review will describe its advantages, disadvantages, and future improvements.

미국방사선의학회는 효과적인 국가 폐암 검진 시행을 위해 2019년도에 Lung CT Screening Reporting & Data System (이하 Lung-RADS) 1.0보다 폐암의 위양성을 줄이기 위해 개편된 Lung-RADS 1.1을 발표하였고, 2022년 12월에 새로운 Lung-RADS 1.1 개선안 Lung-RADS 2022를 발표하였다. Lung-RADS 2022은 Lung-RADS 1.0과 비교했을 때 결절의 크기는 소수점 첫째 자리까지 측정하고, 늑막근처 결절의 크기가 10 mm 미만인 경우까지 범주 2로 하며, 범주 2에서 간유리 결절의 크기 기준을 30 mm로 높이고, 범주 4B와 4X는 매우 의심으로 변경하며, 기도 결절의 위치와 비정형 폐 낭종의 형태와 벽 두께에 따라 범위를 나누었다. 이에 영상의학과 의사들의 개선된 Lung-RADS 2022에 대한 이해를 돕고자, 이 종설에서는 Lung-RADS 2022의 장점, 단점, 그리고 향후 개선점에 대해서 기술하고자 한다.

Keywords

References

  1. Kang MJ, Won YJ, Lee JJ, Jung KW, Kim HJ, Kong HJ, et al. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2019. Cancer Res Treat 2022;54:330-344  https://doi.org/10.4143/crt.2022.128
  2. Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011;365:395-409  https://doi.org/10.1056/NEJMoa1102873
  3. Lee J, Kim Y, Kim HY, Goo JM, Lim J, Lee CT, et al. Feasibility of implementing a national lung cancer screening program: interim results from the Korean Lung Cancer Screening Project (K-LUCAS). Transl Lung Cancer Res 2021;10:723-736  https://doi.org/10.21037/tlcr-20-700
  4. Lee J, Lim J, Kim Y, Kim HY, Goo JM, Lee CT, et al. Development of protocol for Korean Lung Cancer Screening Project (K-LUCAS) to evaluate effectiveness and feasibility to implement national cancer screening program. Cancer Res Treat 2019;51:1285-1294  https://doi.org/10.4143/crt.2018.464
  5. Kastner J, Hossain R, Jeudy J, Dako F, Mehta V, Dalal S, et al. Lung-RADS version 1.0 versus lung-RADS version 1.1: comparison of categories using nodules from the national lung screening trial. Radiology 2021;300:199-206  https://doi.org/10.1148/radiol.2021203704
  6. Chelala L, Hossain R, Kazerooni EA, Christensen JD, Dyer DS, White CS. Lung-RADS version 1.1: challenges and a look ahead, from the AJR special series on radiology reporting and data systems. AJR Am J Roentgenol 2021;216:1411-1422  https://doi.org/10.2214/AJR.20.24807
  7. American College of Radiology. Lung CT screening reporting & data system (Lung-RADS, version 1.1). Available at. https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Lung-Rads. Accessed September 10, 2022 
  8. American College of Radiology. Lung CT screening reporting & data system (Lung-RADS). Available at. https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Lung-Rads. Accessed December 1, 2022 
  9. Dyer SC, Bartholmai BJ, Koo CW. Implications of the updated lung CT screening reporting and data system (lung-RADS version 1.1) for lung cancer screening. J Thorac Dis 2020;12:6966-6977  https://doi.org/10.21037/jtd-2019-cptn-02
  10. de Hoop B, Gietema H, van de Vorst S, Murphy K, van Klaveren RJ, Prokop M. Pulmonary ground-glass nodules: increase in mass as an early indicator of growth. Radiology 2010;255:199-206  https://doi.org/10.1148/radiol.09090571
  11. Tang EK, Chen CS, Wu CC, Wu MT, Yang TL, Liang HL, et al. Natural history of persistent pulmonary subsolid nodules: long-term observation of different interval growth. Heart Lung Circ 2019;28:1747-1754  https://doi.org/10.1016/j.hlc.2018.08.015
  12. Ahn MI, Gleeson TG, Chan IH, McWilliams AM, Macdonald SL, Lam S, et al. Perifissural nodules seen at CT screening for lung cancer. Radiology 2010;254:949-956  https://doi.org/10.1148/radiol.09090031
  13. de Hoop B, van Ginneken B, Gietema H, Prokop M. Pulmonary perifissural nodules on CT scans: rapid growth is not a predictor of malignancy. Radiology 2012;265:611-616  https://doi.org/10.1148/radiol.12112351
  14. van Riel SJ, Sanchez CI, Bankier AA, Naidich DP, Verschakelen J, Scholten ET, et al. Observer variability for classification of pulmonary nodules on low-dose CT images and its effect on nodule management. Radiology 2015;277:863-871  https://doi.org/10.1148/radiol.2015142700
  15. Zhao YR, Heuvelmans MA, Dorrius MD, van Ooijen PM, Wang Y, de Bock GH, et al. Features of resolving and nonresolving indeterminate pulmonary nodules at follow-up CT: the NELSON study. Radiology 2014;270:872-879  https://doi.org/10.1148/radiol.13130332
  16. Lee SM, Park CM, Goo JM, Lee CH, Lee HJ, Kim KG, et al. Transient part-solid nodules detected at screening thin-section CT for lung cancer: comparison with persistent part-solid nodules. Radiology 2010;255:242-251  https://doi.org/10.1148/radiol.09090547
  17. Henschke CI, Yip R, Yankelevitz DF, Smith JP; International Early Lung Cancer Action Program Investigators. Definition of a positive test result in computed tomography screening for lung cancer: a cohort study. Ann Intern Med 2013;158:246-252  https://doi.org/10.7326/0003-4819-158-4-201302190-00004
  18. Aberle DR, Adams AM, Berg CD, Clapp JD, Clingan KL, Gareen IF, et al. Baseline characteristics of participants in the randomized national lung screening trial. J Natl Cancer Inst 2010;102:1771-1779  https://doi.org/10.1093/jnci/djq434
  19. Nunez ER, Caverly TJ, Zhang S, Glickman ME, Qian SX, Boudreau JH, et al. Adherence to follow-up testing recommendations in US veterans screened for lung cancer, 2015-2019. JAMA Netw Open 2021;4:e2116233 
  20. Kim RY, Rendle KA, Mitra N, Saia CA, Neslund-Dudas C, Greenlee RT, et al. Racial disparities in adherence to annual lung cancer screening and recommended follow-up care: a multicenter cohort study. Ann Am Thorac Soc 2022;19:1561-1569  https://doi.org/10.1513/AnnalsATS.202111-1253OC
  21. Nunez ER, Gould MK, Wiener RS. Time to update lung-RADS v1.1? Incorporating evidence from recent observational studies. J Am Coll Radiol 2022 Aug 12 [Epub]. https://doi.org/10.1016/j.jacr.2022.06.010 
  22. Mendoza DP, Petranovic M, Som A, Wu MY, Park EY, Zhang EW, et al. Lung-RADS category 3 and 4 nodules on lung cancer screening in clinical practice. AJR Am J Roentgenol 2022;219:55-65  https://doi.org/10.2214/AJR.21.27180
  23. Mackintosh JA, Marshall HM, Yang IA, Bowman RV, Fong KM. A retrospective study of volume doubling time in surgically resected non-small cell lung cancer. Respirology 2014;19:755-762  https://doi.org/10.1111/resp.12311
  24. Ru Zhao Y, Xie X, de Koning HJ, Mali WP, Vliegenthart R, Oudkerk M. NELSON lung cancer screening study. Cancer Imaging 2011;11 Spec No A:S79-S84  https://doi.org/10.1102/1470-7330.2011.9020
  25. van Klaveren RJ, Oudkerk M, Prokop M, Scholten ET, Nackaerts K, Vernhout R, et al. Management of lung nodules detected by volume CT scanning. N Engl J Med 2009;361:2221-2229  https://doi.org/10.1056/NEJMoa0906085
  26. Oxnard GR, Zhao B, Sima CS, Ginsberg MS, James LP, Lefkowitz RA, et al. Variability of lung tumor measurements on repeat computed tomography scans taken within 15 minutes. J Clin Oncol 2011;29:3114-3119  https://doi.org/10.1200/JCO.2010.33.7071
  27. Petrick N, Kim HJ, Clunie D, Borradaile K, Ford R, Zeng R, et al. Comparison of 1D, 2D, and 3D nodule sizing methods by radiologists for spherical and complex nodules on thoracic CT phantom images. Acad Radiol 2014;21:30-40  https://doi.org/10.1016/j.acra.2013.09.020
  28. Wang Y, van Klaveren RJ, van der Zaag-Loonen HJ, de Bock GH, Gietema HA, Xu DM, et al. Effect of nodule characteristics on variability of semiautomated volume measurements in pulmonary nodules detected in a lung cancer screening program. Radiology 2008;248:625-631  https://doi.org/10.1148/radiol.2482070957
  29. Bankier AA, MacMahon H, Goo JM, Rubin GD, Schaefer-Prokop CM, Naidich DP. Recommendations for measuring pulmonary nodules at CT: a statement from the Fleischner Society. Radiology 2017;285:584-600  https://doi.org/10.1148/radiol.2017162894
  30. Giacomelli IL, Barros M, Pacini GS, Altmayer S, Zanon M, Dias AB, et al. Multiple cavitary lung lesions on CT: imaging findings to differentiate between malignant and benign etiologies. J Bras Pneumol 2020;46:e20190024 
  31. Wagnetz U, Menezes RJ, Boerner S, Paul NS, Wagnetz D, Keshavjee S, et al. CT screening for lung cancer: implication of lung biopsy recommendations. AJR Am J Roentgenol 2012;198:351-358  https://doi.org/10.2214/AJR.11.6726
  32. Watanabe Y, Kusumoto M, Yoshida A, Shiraishi K, Suzuki K, Watanabe SI, et al. Cavity wall thickness in solitary cavitary lung adenocarcinomas is a prognostic indicator. Ann Thorac Surg 2016;102:1863-1871  https://doi.org/10.1016/j.athoracsur.2016.03.121
  33. Fintelmann FJ, Brinkmann JK, Jeck WR, Troschel FM, Digumarthy SR, Mino-Kenudson M, et al. Lung cancers associated with cystic airspaces: natural history, pathologic correlation, and mutational analysis. J Thorac Imaging 2017;32:176-188  https://doi.org/10.1097/RTI.0000000000000265
  34. Honda O, Tsubamoto M, Inoue A, Johkoh T, Tomiyama N, Hamada S, et al. Pulmonary cavitary nodules on computed tomography: differentiation of malignancy and benignancy. J Comput Assist Tomogr 2007;31:943-949  https://doi.org/10.1097/RCT.0b013e3180415e20
  35. Kradin RL, Spirn PW, Mark EJ. Intrapulmonary lymph nodes. Clinical, radiologic, and pathologic features. Chest 1985;87:662-667  https://doi.org/10.1378/chest.87.5.662
  36. Xu DM, van der Zaag-Loonen HJ, Oudkerk M, Wang Y, Vliegenthart R, Scholten ET, et al. Smooth or attached solid indeterminate nodules detected at baseline CT screening in the NELSON study: cancer risk during 1 year of follow-up. Radiology 2009;250:264-272  https://doi.org/10.1148/radiol.2493070847
  37. Takashima S, Sone S, Li F, Maruyama Y, Hasegawa M, Kadoya M. Indeterminate solitary pulmonary nodules revealed at population-based CT screening of the lung: using first follow-up diagnostic CT to differentiate benign and malignant lesions. AJR Am J Roentgenol 2003;180:1255-1263 https://doi.org/10.2214/ajr.180.5.1801255