References
- Kopans DB, D'Orsi CJ, Adler DED. Breast imaging reporting and data system. Reston, VA: American College of Radiology 1993
- D'Orsi CJ, Sickles EA, Mendelson EB, Morris EA. ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. Reston, VA: American College of Radiology 2013
- Eghtedari M, Chong A, Rakow-Penner R, Ojeda-Fournier H. Current status and future of BI-RADS in multimodality imaging, from the AJR special series on radiology reporting and data systems. AJR Am J Roentgenol 2021;216:860-873 https://doi.org/10.2214/AJR.20.24894
- Lam DL, Entezari P, Duggan C, Muyinda Z, Vasquez A, Huayanay J, et al. A phased approach to implementing the breast imaging reporting and data system (BI-RADS) in low-income and middle-income countries. Cancer 2020;126 Suppl 10:2424-2430 https://doi.org/10.1002/cncr.32864
- Scheel JR, Peacock S, Orem J, Bugeza S, Muyinda Z, Porter PL, et al. Improving breast ultrasound interpretation in Uganda using a condensed breast imaging reporting and data system. Acad Radiol 2016;23:1271-1277 https://doi.org/10.1016/j.acra.2016.05.018
- Taylor K, Britton P, O'Keeffe S, Wallis MG. Quantification of the UK 5-point breast imaging classification and mapping to BI-RADS to facilitate comparison with international literature. Br J Radiol 2011;84:1005-1010 https://doi.org/10.1259/bjr/48490964
- Orel SG, Kay N, Reynolds C, Sullivan DC. BI-RADS categorization as a predictor of malignancy. Radiology 1999;211:845-850 https://doi.org/10.1148/radiology.211.3.r99jn31845
- Liberman L, Abramson AF, Squires FB, Glassman JR, Morris EA, Dershaw DD. The breast imaging reporting and data system: positive predictive value of mammographic features and final assessment categories. AJR Am J Roentgenol 1998;171:35-40 https://doi.org/10.2214/ajr.171.1.9648759
- Berg WA, Berg JM, Sickles EA, Burnside ES, Zuley ML, Rosenberg RD, et al. Cancer yield and patterns of follow-up for BI-RADS category 3 after screening mammography recall in the National Mammography Database. Radiology 2020;296:32-41 https://doi.org/10.1148/radiol.2020192641
- Lee SE, Lee JH, Han K, Kim EK, Kim MJ, Moon HJ, et al. BI-RADS category 3, 4, and 5 lesions identified at preoperative breast MRI in patients with breast cancer: implications for management. Eur Radiol 2020;30:2773-2781 https://doi.org/10.1007/s00330-019-06620-y
- Chikarmane SA, Birdwell RL, Poole PS, Sippo DA, Giess CS. Characteristics, malignancy rate, and follow-up of BI-RADS category 3 lesions identified at breast MR imaging: implications for MR image interpretation and management. Radiology 2016;280:707-715 https://doi.org/10.1148/radiol.2016151548
- Grimm LJ, Anderson AL, Baker JA, Johnson KS, Walsh R, Yoon SC, et al. Frequency of malignancy and imaging characteristics of probably benign lesions seen at breast MRI. AJR Am J Roentgenol 2015;205:442-447 https://doi.org/10.2214/AJR.14.13530
- Spick C, Bickel H, Polanec SH, Baltzer PA. Breast lesions classified as probably benign (BI-RADS 3) on magnetic resonance imaging: a systematic review and meta-analysis. Eur Radiol 2018;28:1919-1928 https://doi.org/10.1007/s00330-017-5127-y
- Hong S, Song SY, Park B, Suh M, Choi KS, Jung SE, et al. Effect of digital mammography for breast cancer screening: a comparative study of more than 8 million Korean women. Radiology 2020;294:247-255 https://doi.org/10.1148/radiol.2019190951
- Tran TXM, Kim S, Song H, Lee E, Park B. Association of longitudinal mammographic breast density changes with subsequent breast cancer risk. Radiology 2023;306:e220291
- Kim S, Tran TXM, Song H, Ryu S, Chang Y, Park B. Mammographic breast density, benign breast disease, and subsequent breast cancer risk in 3.9 million Korean women. Radiology 2022;304:534-541 https://doi.org/10.1148/radiol.212727
- Sickles EA, Miglioretti DL, Ballard-Barbash R, Geller BM, Leung JW, Rosenberg RD, et al. Performance benchmarks for diagnostic mammography. Radiology 2005;235:775-790 https://doi.org/10.1148/radiol.2353040738
- Lehman CD, Arao RF, Sprague BL, Lee JM, Buist DS, Kerlikowske K, et al. National performance benchmarks for modern screening digital mammography: update from the Breast Cancer Surveillance Consortium. Radiology 2017;283:49-58 https://doi.org/10.1148/radiol.2016161174
- Miglioretti DL, Ichikawa L, Smith RA, Bassett LW, Feig SA, Monsees B, et al. Criteria for identifying radiologists with acceptable screening mammography interpretive performance on basis of multiple performance measures. AJR Am J Roentgenol 2015;204:W486-W491 https://doi.org/10.2214/AJR.13.12313
- Choe J, Chikarmane SA, Giess CS. Nonmass findings at breast US: definition, classifications, and differential diagnosis. Radiographics 2020;40:326-335 https://doi.org/10.1148/rg.2020190125
- Park KW, Park S, Shon I, Kim MJ, Han BK, Ko EY, et al. Non-mass lesions detected by breast US: stratification of cancer risk for clinical management. Eur Radiol 2021;31:1693-1706 https://doi.org/10.1007/s00330-020-07168-y
- Travieso-Aja MM, Maldonado-Saluzzi D, Naranjo-Santana P, Fernandez-Ruiz C, Severino-Rondon W, Rodriguez Rodriguez M, et al. Evaluation of the applicability of BI-RADS® MRI for the interpretation of contrast-enhanced digital mammography. Radiologia (Engl Ed) 2019;61:477-488 https://doi.org/10.1016/j.rxeng.2019.07.003
- Knogler T, Homolka P, Hoernig M, Leithner R, Langs G, Waitzbauer M, et al. Application of BI-RADS descriptors in contrast-enhanced dual-energy mammography: comparison with MRI. Breast Care (Basel) 2017;12:212-216 https://doi.org/10.1159/000478899
- Kamal RM, Helal MH, Mansour SM, Haggag MA, Nada OM, Farahat IG, et al. Can we apply the MRI BI-RADS lexicon morphology descriptors on contrast-enhanced spectral mammography? Br J Radiol 2016;89:20160157
- Vedantham S, Karellas A, Vijayaraghavan GR, Kopans DB. Digital breast tomosynthesis: state of the art. Radiology 2015;277:663-684 https://doi.org/10.1148/radiol.2015141303
- van Zelst JCM, Mann RM. Automated three-dimensional breast US for screening: technique, artifacts, and lesion characterization. Radiographics 2018;38:663-683 https://doi.org/10.1148/rg.2018170162
- Jiang J, Chen YQ, Xu YZ, Chen ML, Zhu YK, Guan WB, et al. Correlation between three-dimensional ultrasound features and pathological prognostic factors in breast cancer. Eur Radiol 2014;24:1186-1196 https://doi.org/10.1007/s00330-014-3135-8
- Tang G, An X, Xiang H, Liu L, Li A, Lin X. Automated breast ultrasound: interobserver agreement, diagnostic value, and associated clinical factors of coronal-plane image features. Korean J Radiol 2020;21:550-560 https://doi.org/10.3348/kjr.2019.0525
- Kaplan SS. Automated whole breast ultrasound. Radiol Clin North Am 2014;52:539-546 https://doi.org/10.1016/j.rcl.2014.01.002
- Grimm LJ, Rahbar H, Abdelmalak M, Hall AH, Ryser MD. Ductal carcinoma in situ: state-of-the-art review. Radiology 2022;302:246-255 https://doi.org/10.1148/radiol.211839
- University of Birmingham. LORIS: a phase III trial of surgery versus active monitoring for low risk ductal carcinoma in situ (DCIS). Available at. https://www.birmingham.ac.uk/Documents/college-mds/trials/crctu/Loris/LORIS-Trial-Protocol-Vn4.0-15.03.16.pdf. Accessed October 1, 2022
- Kuerer HM, Vrancken Peeters MTFD, Rea DW, Basik M, De Los Santos J, Heil J. Nonoperative management for invasive breast cancer after neoadjuvant systemic therapy: conceptual basis and fundamental international feasibility clinical trials. Ann Surg Oncol 2017;24:2855-2862 https://doi.org/10.1245/s10434-017-5926-z
- Tasoulis MK, Lee HB, Yang W, Pope R, Krishnamurthy S, Kim SY, et al. Accuracy of post-neoadjuvant chemotherapy image-guided breast biopsy to predict residual cancer. JAMA Surg 2020;155:e204103